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Abstract

A layered-model is introduced to approximate the effects of strat-
ification on linearized shallow water equations. This time-dependent
dispersive wave model is appropriate for describing geophysical (e.g. at-
mospheric or oceanic) dynamics. However, computational models
that embrace these very large domains that are global in magnitude
can quickly overwhelm computer capabilities. The domain is there-
fore truncated via artificial boundaries, and robust non-reflecting
boundary conditions (NRBC) devised by Higdon are imposed. A
scheme previously proposed by Neta and Givoli that easily discretizes
high-order Higdon NRBC’s is used. The problem is solved by Finite
Difference (FD) methods. Numerical examples follow the discussion.

1 Introduction

In various applications one is often interested in solving a dispersive wave
problem computationally in a domain which is much smaller than the ac-
tual domain where the governing equations hold. One of the common meth-
ods for solving this problem [1] is using non-reflecting boundary conditions
(NRBC) to truncate the original domain D artificially in order to enclose a
computational domain 2. The NRBC should minimize spurious reflections
when waves impinge on these artificial boundaries. The boundary condi-
tion applied on B is called a Non-Reflecting Boundary Condition (NRBC),
although a few other names are often used too [2]. Naturally, the quality of
the numerical solution strongly depends on the properties of the NRBC em-
ployed. In the last 25 years or so, much research has been done to develop
NRBCs that after discretization lead to a scheme which is stable, accurate,
efficient and easy to implement. See [3] for discussion on related issues and
[4] and [5] for recent reviews on the subject. Of course, it is difficult to find a
single NRBC which is ideal in all respects and all cases; this is why the quest
for better NRBCs and their associated discretization schemes continues. G.
Fix has also contributed to this quest; see, e.g., [6].

Some low-order local NRBCs have been proposed in the late 70’s and
early 80’s and have become well-known, e.g., the Engquist-Majda NRBCs [7]
and the Bayliss-Gunzburger-Turkel NRBCs [8, 9]. Some of these 2nd-order
NRBCs are excellent “all-purpose” conditions, but due to their limited or-
der of accuracy there are always situations where their performance is not
satisfactory. The late 80’s and early 90’s have been characterized by the
emerging of the exact nonlocal Dirichlet-to-Neumann (DtN) NRBC [10]-
[12] and the Perfectly Matched Layer (PML) [13]. Both are very effective
for certain types of problems. However, both deviate from the “standard
model” of NRBCs; the former in its nonlocality and the latter in the ne-
cessity for a layer with a finite thickness. We also remark that exact DtN
operators are not available in all configurations, while the performance of



PML schemes has been demonstrated to be quite sensitive to the computa-
tional parameters when the non-dimensional wave number is small.

Recently, high-order local NRBCs have been introduced. Sequences
of increasing-order NRBCs have been available before (e.g., the Bayliss-
Gunzburger-Turkel conditions [8, 9] constitute such a sequence), but they
had been regarded as impractical beyond 2nd or 3rd order from the im-
plementation point of view. Only since the mid 90’s, practical high-order
NRBCs have been devised. The clear advantage of high-order local NRBCs
is that while they have a standard form which can be imposed on an ar-
tificial boundary in conjunction with various computational methods, they
can be used up to an arbitrarily high order. If in addition they converge in
the sense discussed in [14], then their accuracy is unlimited. The NRBCs
used in this paper are of this kind.

The first such high-order NRBC has apparently been proposed by Collino
[15], for two-dimensional time-dependent waves in rectangular domains. Its
construction requires the solution of the one-dimensional wave equation on
B. Grote and Keller [16] developed a high-order converging NRBC for the
three-dimensional time-dependent wave equation, based on spherical har-
monic transformations. They extended this NRBC for the case of elastic
waves in [17]. Sofronov [18] has independently published a similar scheme in
the Russian literature. Hagstrom and Hariharan [19] constructed high-order
NRBCs for the two- and three-dimensional time-dependent wave equations
based on the analytic series representation for the outgoing solutions of
these equations. It looks simpler than the previous two NRBCs. For time-
dependent waves in a two-dimensional wave guide, Guddati and Tassoulas
[20] devised a high-order NRBC by using rational approximations and re-
cursive continued fractions. Givoli [21] has shown how to derive high-order
NRBCs for a general class of wave problems, leading to a symmetric finite
element formulation. In [22], this methodology was applied to the particular
case of time-harmonic waves, using optimally localized DtN NRBCs.

In terms of the complexity of designing accurate NRBC’s, one can dis-
tinguish between three types of linear wave problems: time-harmonic, time-
dependent in non-dispersive homogeneous media, and time-dependent in
dispersive and/or stratified media. Time-harmonic waves are governed by
the Helmholtz equation and are, to a large extent, solved as far as NRBC’s
are concerned (see e.g. [12, 4]). Time-dependent waves, governed by the
scaler wave equation, are much more involved. Dispersive and stratified-
medium wave problems, pose the greatest difficulty. In this paper we con-
sider the latter type of problems.

Most of the NRBCs mentioned above have been designed for either time-
harmonic waves or for non-dispersive time-dependent waves. The presence
of wave dispersion or stratification makes the time-dependent problem much
more difficult as far as NRBC treatment is concerned. Dispersive media ap-
pear in various applications. One important example is that of meteorolog-
ical models which take into account the earth rotation [23]. Other examples



include quantum-mechanics waves, the vibration of structures with rota-
tional rigidity such as beams, plates and shells, and many nonlinear wave
problems, with or without linearization. Very recently, Navon et al. [24]
developed a PML scheme for the dispersive shallow water equations. In the
present paper we develop high-order NRBCs for dispersive waves. Natu-
rally, our scheme is just as applicable to the non-dispersive case, by simply
taking the dispersion parameter to be zero.

Higdon NRBC’s have been shown to be quite effective in handling dis-
persive wave problems (see e.g. [25]-[27]). They were first presented and an-
alyzed in a sequence of papers for non-dispersive acoustic and elastic waves
(see e.g. [28]-[30]) and were later extended separately to elastic waves in a
stratified medium [31] and to dispersive waves in a homogeneous medium
[32]. However, in [28]-[32] only low-order Higdon conditions were developed.
Our scheme is based on Higdon’s NRBCs, extended to the simultaneously
dispersive and stratified case. However, in contrast to the original low-order
formulation of these conditions, a new scheme is devised here which allows
the easy use of a Higdon-type NRBC of any desired order.

We propose the use of high-order Higdon-NRBC’s in the context of the
two-dimensional Klein-Gordon equation in stratified dispersive media. In
Section 2 a general N-layer stratified model is developed. In Sections 3
and 4 we construct and discretize a general J"-order Higdon NRBC. The
interior discretization scheme is developed in Section 5. In Section 6, we
describe a dispersive wave problem in a semi-infinite channel and present a
numerical example. Conclusions and recommendations for further research
appear in Section 7.

2 General N-Layer Stratification Model for
Geophysical Flow

Geophysical fluid flow is governed by the laws of traditional fluid dynamics,
but must also account for the additional effects of the Earth’s rotation and
density stratification within the medium. Models are based on mass, mo-
mentum, and energy conservation principles. A coordinate system based on
the rotating Earth (Fig. 1) is utilized. The following simplifying assump-
tions are often invoked to produce a working model:

e The fluid is incompressible and therefore energy conservation consid-
erations are neglected.

e The fluid is inviscid, hence frictional forces are neglected.

e The fluid density is homogeneous (i.e. not stratified) enabling the
decoupling of the continuity equation.

e Centrifugal forces are negated by gravity, simplifying the momentum
equations.



Parallel

Figure 1: Coordinate System Based on Rotating Earth

e The curvature of the earth is neglected for domain lengths less than
1000 kilometers [33].

e The shallow water assumption (e.g. depth<horizontal dimensions) is
imposed, hence vertical velocity terms are neglected.

e There is no advection and the bottom topography is flat.

Using these assumptions, one can derive a set of shallow water equations
that model geophysical flow for a fluid with a constant density (see e.g.
Pedlosky [23]). The horizontal momentum equations are:
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where u and v are the horizontal components of velocity in the z- and
y-directions respectively, f is the Coriolis (or dispersion) parameter that
results from the Earth’s rotation, and p is pressure. It is easily shown using
hydrostatic principles that:
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where h is the surface height above a pre-determined reference, g is the
gravitation parameter, and p is the density of the medium. The vertical
momentum component is found to be:

oh 0 0



We now lift the homogeneous fluid assumption and develop a set of
equations to model geophysical flow in a stratified medium. A suitable
medium for a geophysical dynamics is the open ocean where fluid density
is affected by salinity and temperature. Salinity changes are slight in this
environment, and temperature remains relatively constant in the horizontal
directions. However, temperature does change significantly in the vertical
direction. Therefore we approximate ocean density p to be a function of z
only. Since the fluid is assumed to be incompressible, p does not vary with
pressure p.

Equations (1) and (3) were derived in part from the conservation of mass
(or continuity) equation for fluids:

Op

— + V- (pi) =0, 4
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where @ is the velocity vector of a fluid element. For homogeneous and
incompressible fluids, this equation is simplified to:

Ou Ov Ow
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7 b + dy + 0z (5)
It can be shown that u and v are independent of z for a constant density

fluid [23]. Thus w is uncoupled from u and v yielding:

__ (Oulz,y,t)  Ov(x,y,t)\ |
w(z,y,z,t) = Z< 5 T oy + W (z,y, t). (6)

This critical step in the derivation is no longer possible when we assume
that p is dependent on z.

We extricate ourselves from this conundrum by developing a layered
shallow water approximation where p is constant in each layer (Fig. 2).
Here it is assumed that the fluid is still incompressible and that density
p; is constant in each layer L;, but varies in the different layers. In order
for this stratification scheme to be stable, p; must be monotonic increas-
ing downward [33]. Additionally we assume that there is no fluid mixing
between layers.

Using the N-layer model, the pressure p; at any point in L; is:

i—1 N
pi=Po+g | pihi+pi Y (hj—2) |, (7)
j=1 j=i

where Py is a constant ambient pressure at the surface hg and N is the
total number of layers in the model. In (7), the first summation term is the
contribution to p; from the layers above L;. The second summation term is
the contribution to p; from the liquid column in L;. We use (1) and (7) to
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Figure 2: N-Layer Shallow Water Model

obtain the horizontal momentum equations in L;:
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where u;, v; and w; are the x-, y-, and z-components of velocity in L;.
Derivation of the vertical momentum equation in L; is more complex.
Since p; is constant in L;, we can uncouple the continuity equation for L;:
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where w; is a vertical velocity component in L;. For brevity we drop depen-
dent variables from subsequent expressions. At the interface between L;_q
and L; , the vertical speed component w; is (see [23]):

0 & 0 & 0 =
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At the interface between L; and L;;1, the vertical speed component w; is:

w; = 8t Z h;j +u,8 Z h;j -f-Ul Z hj, (12)
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which implies that:
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Since w; is independent of z, (11) and (13) must be equal. Therefore:
ool (i) + 5 (uihi) = (14)

Equation (14) is the vertical momentum equation for L;. Together with (8)
this completes the description of the fluid motion inside of the i**-layer L;.
Before considering a numerical solution we linearize the governing equa-
tions for each layer. We assume that the u;, v;, and h; are dominated by
constant terms U;, V; and @i. Superimposed on these are small variations
uf, vf, and n; of O(9), i

w; =U; +u;, v,=Vi+v, and h;=0;+mn;. (15)

Substituting these in (8) and (14) and neglecting terms of O(§?) yields:
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If we assume that there is no advection (e.g. U; = V; = 0), then (16)
reduces to:
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Using methods which are simple generalizations of those used in [23] for
a homogeneous medium (see [27] for details), (17) is reduced to a single
equation:

8277' i—1 i N
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where S; is a constant resulting from integration. Equation (18) resembles
Klein-Gordon equation, which describes dispersive wave behavior. We will
use this model to predict fluid behavior for the N-layer stratification model.

3 Higdon’s NRBCs

Geophysical flow occurs in very large domains, and numerical methods used
to approximate such phenomena can quickly exceed computer capabilities.
We therefore seek to restrict the domain of interest by employing artificial
boundaries using methods proposed by Higdon. For a straight boundary
normal to the z-direction, H; (a Higdon NRBC of order J) is:

J

[T (5 + o) | et =0 (19

where () is a set of parameters that is chosen to signify phase speeds in the
z-direction. The boundary condition is exact (e.g. no spurious reflection
at the artificial boundary B) for all combinations of waves that propagate
with z-direction phase speeds Cp, ... ,Cjy. Higdon NRBC’s have many
advantages including:

e Robustness: The reflection coefficient R is a product of J factors,
which are less than 1 [32]. Thus R becomes smaller as the .J increases.
A good choice of C;’s results in better accuracy, but spurious reflection
can still be reduced with non-optimal C;’s by simply increasing J.



e General applicability: Most available NRBC’s are either designed for
non-dispersive media (as in acoustics and electromagnetics) or are
of low order (as in meteorology and oceanography). Higdon NRBC’s
apply to a variety of wave problems including those in dispersive media
(see e.g. [14]-]26]). They can be used for one or more dimensions, and
as we show here, for layered models.

4 Discretization of Higdon’s NRBCs

Because of their algebraic complexity, discrete Higdon NRBC’s were devel-
oped in the literature up to the third order only. Here we implement ar-
bitrarily high orders using a scheme previously developed Givoli and Neta
[25]. The Higdon condition Hy is a product of J operators of the form

0 0
E-FC]'%. (20)

These are calculated numerically using second-order FD approximations:
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where At is the time-step size, Az is the z-direction grid spacing, I is the
identity operator, and S, and S are backward shift operators defined as:

S Nitpg = ng;ql J Sa Mipg = Mip-—1.q - (22)

Here and elsewhere, 5}’ is the FD approximation of ni(z,y,t) at grid point
(p,yq) and at time ¢, in layer L;. Using (19) and (21) we obtain:

J _ _
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Jj=1

where the index E corresponds to the grid point that marks the artificial
boundary. This formula is used to find the values on the artificial boundary
after the interior point values have been updated.

5 The Interior Scheme

A standard second-order central-difference scheme is used to discretize (18).
Higdon proved that in the context of the scalar Klein-Gordon equation,
discrete NRBC’s (23) are stable if such a scheme is used [32]. Thus solving

10
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where Cy; = +/g©;. We use this interior scheme in the numerical experi-
ments presented at the end of this paper. Since (23) and (24) are explicit,
the whole scheme is explicit.

6 Numerical Example

Consider a geophysical process that occurs in a semi-infinite channel (Fig. 3).
All assumptions and simplifications used to derive the N-layer model apply.
A Cartesian coordinate system (z,y) is introduced such that the channel is
parallel to the z-direction. On the north and south boundaries I'y and I's
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Figure 3: Semi-Infinite Channel

we specify the Neumann condition:

om;
oy

=0 for i=1..N. (25)
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On the west boundary I'yyy we prescribe 7; using a Dirichlet condition, i.e.,
ni(0,y,t) = Ny, (y,t) for i=1..N, (26)

where n,, (y,1) is a given function for an incoming wave or disturbance. At
x — oo the solution is bounded and does not include any incoming waves.
The initial conditions are:

6771 (1‘, Y, 0)
ot

To obtain a well-posed problem in a finite domain Q2 we impose a high-order
Higdon-NRBC on the east boundary I'g.

We now apply the new stratification scheme to a test problem using
the semi-infinite wave-guide. A channel width b = 5 and depth d = .1 are
selected (note that d is not a model parameter, but to satisfy the shallow
water assumption, it must be true that depth <« horizontal dimensions).
The stratified medium is modeled with six layers. The layer thicknesses
from top to bottom are 6; = {.01,.01,.01,.01,.01,.05}. The density for
each layer is given by p, = {1,1.05,1.1,1.15,1.2,1.25}. A gravitational
parameter g = 10 and a dispersion parameter f = .5 is used.

The boundary function n,, on I'y is stipulated to simulate two geophys-
ical events. A surface disturbance, akin to the wind acting on the ocean, is
initiated in Ly by setting:

ni(z,y,0) =0, =0 for i=1..N. (27)

(28)

.0005 cos [Z(y — 2.5)] sinwt 0<t<125,
M, (Y, 1) =

0 otherwise.

Note that the maximum amplitude of the disturbance is small relative to
the layer thickness 6; = .01 so that the validity of the model, which is based
on perturbation analysis, is not violated. A second disturbance, simulating
seismic activity on the ocean floor, is initiated in the Lg and given by:

.001 if [y —25/<15 & 6<t<75,
Ny = (29)
0 otherwise .

All other values for 7, are zero. The simulation is run for 15 time units.
The problem is solved for three different scenarios. First, an extended
domain D is constructed using a 15 x 5 rectangle with a 60 x 20 mesh to
compute a reference solution 7,.¢. Then two additional solutions, 7., ,
and 7,,,. ,, are computed on a truncated domain {2 in which an artificial
boundary B imposed at £ = 5. A 20 x 20 mesh is used on the resulting
5 x 5 square so that the mesh for 2 and D are identical in the truncated
region. For n,_.. ,, a Higdon NRBC of order J = 5 with parameters C; =
{1,1,1,1,1} is used for each layer. For 7. .. ,, J =2 and C; = {1,1} is
used. Note that the value n in each case represents the total perturbation
on the domain surface and is the sum of the perturbations of each layer.

12



The reference solution n,.s is then juxtaposed with 7, .., and n.,,.,
both graphically and quantitatively. The numerical solutions are used to
obtain error measurements ||e,|| at time ¢,, which are calculated by:

N, Ny
- [777‘8 (x'ay'atn) ~Ncase i(x'ay';tn)P
lenllow.. . = Y Y[ A SRR (30)
i=1 j=1 -y

where N, and N, are determined by grid spacing. In both cases, the error
at the surface and for each layer interface is plotted versus time. Note that
the size of D precludes spurious reflections from polluting n,.y. Therefore
lle|| serves as a measure of spurious reflection at 5.
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T 5
4 1
3 ’ |
2 0
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0 1 2 3 4 5 5 6 7 8 9 10
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Figure 4: Higdon NRBC Comparison (Solution at t=7)

At time ¢t = 7 (Fig. 4), the surface disturbance in L; has populated
and is now visible D. In addition, the bottom disturbance has been initi-
ated and is propagating in Q. Both n_,,. , and n,,.. , exhibit wave traces
similar to those in 7,.y. However, ||e]|.... , is an order of magnitude smaller
than ||e|... .- This demonstrates that increasing the Higdon NRBC order
reduces spurious reflection.

13



on Exterior Domain
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Figure 5: Higdon NRBC Comparison (Solution at t=15)

At time ¢ = 15 (Fig. 5), the surface disturbance, which ended at t =
12.5, continues to propagate in ) and D. The bottom disturbances has
successfully passed through 'y without a significant increase in spurious
reflection. The wave trace for ., , closely resembles that of n,.r, however
deviations in 7., , are now visible. This example demonstrates that a
properly constructed Higdon NRBC can be used to restrict the domain of
the N-layer stratification model governed by the linearized shallow water
equation.

We now consider the behavior of the perturbation at each layer interface
as predicted by the model. To accomplish this, filled contour plots were
constructed for the surface and the five layer interfaces using data obtained
from 7,,,. ,- All contours and color schemes are relative to the total surface
perturbation.

The first comparison is again at ¢ = 7 (Fig. 6). We note the surface
event has not only propagated across (2, but it has also propagated through
the layers. From the contours we see that the magnitude of the response to
the surface event is damped with each successive layer downward. However,

14
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Figure 6: Layer Interface Perturbation Comparison (Solution at t=7)

the wave appears to maintain its character throughout the layers as far as
wave speed and geometric dispersion is concerned. We also note that the
bottom layer event on the left side of the plot has immediately propagated
to the upper layers. This is reasonable since the fluid is incompressible.
However, as the wave propagates through €2, the effect on the lower layers
once again damps out.

At t = 15, the damping phenomenon in the lower layers is more pro-
nounced (Fig. 7). However, there is an exception on right side of the plot.
In this regime, the perturbation is nearly zero and affected primarily by
spurious reflection from B. Differences in each layer’s reflection may have
caused this visible anomaly in which the perturbation in the lower layers is
more pronounced than in the surface layer. The overall results of the model
do however seem reasonable. Submarines that transit the ocean depths are
relatively unaffected by raging storms on the ocean’s surface.

We now compare the six-layer model with a two-layer and single-layer
model. For this we set up the parameters for two-layer model as follows:
6; = {.05,.05} and p, = {1.1,1.25}. Essentially we have combined the upper

15
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Figure 7: Layer Interface Perturbation Comparison (Solution at t=15)

five layers of the six-layer model, taken their average density, and used this
to represent the first layer of the two-layer model. The second layer of the
two-layer model is the same as the bottom layer of the six-layer model. The
parameters for the single-layer model are # = .1 and p = 1.175 (note that
from (18) we conclude that density is not a parameter in the single-layer
model and therefore the value for p is irrelevant ). The problem is again run
for 15 time units, however the domain is extended to z = 15 for each model
and a 60 x 20 mesh is used. This eliminates artificial boundary effects and
comparisons can be made without concern for spurious reflection. All other
parameters are the same.

The results of the three models are presented for ¢t = 15 (Fig. 8). Com-
paring the contours of the models reveal the surface effect is reduced as the
number of layers increase. Hence, the single-layer representation tends to
over-predict surface wave action.

16
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Figure 8: Model Comparison (Solution at t=15)

7 Observations and Recommendations for
Further Research

From the numerical example in the previous section we can make several
observations. We have shown that Higdon NRBC’s are effectively employed
to restrict the domain for the N-layer density model. With regards to
this model itself, we observed that surface disturbances propagate to lower,
denser layers, although their effect is dampened in each successive layer.
The model also predicts that bottom disturbances propagate immediately
to the upper levels, however, as they propagate horizontally, their effect
is once again damped in the lower, denser layers. Both observations seem
reasonable and mimic real ocean behavior. Finally we observed that the
presence of dense lower layers dampen surface wave action.

Several recommendations are offered to expand and explore this model
further. The addition of Higdon NRBC’s to the west, north, and south
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boundaries would allow us to reframe the problem domain as a “patch
of open ocean” vice a “truncated semi-infinite channel with hard walls”.
We could further expand the model by considering the effects of advection
and a bottom contour that is not flat. Finally, we could construct layer
versus density profiles that represent known ocean areas. In addition we
might define forcing functions that better simulate weather patterns, seismic
events, or other geophysical phenomena. Using these, we could compare the
model’s prediction against known data.
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