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Abstract

A layered�model is introduced to approximate the e�ects of strat�
i�cation on linearized shallow water equations� This time�dependent
dispersive wave model is appropriate for describing geophysical �e�g� at�
mospheric or oceanic� dynamics� However� computational models
that embrace these very large domains that are global in magnitude
can quickly overwhelm computer capabilities� The domain is there�
fore truncated via arti�cial boundaries� and robust non�re�ecting
boundary conditions �NRBC� devised by Higdon are imposed� A
scheme previously proposed by Neta and Givoli that easily discretizes
high�order Higdon NRBC�s is used� The problem is solved by Finite
Di�erence �FD� methods� Numerical examples follow the discussion�

� Introduction

In various applications one is often interested in solving a dispersive wave
problem computationally in a domain which is much smaller than the ac�
tual domain where the governing equations hold� One of the common meth�
ods for solving this problem ��� is using non�re�ecting boundary conditions
�NRBC� to truncate the original domain D arti�cially in order to enclose a
computational domain 	� The NRBC should minimize spurious re�ections
when waves impinge on these arti�cial boundaries� The boundary condi�
tion applied on B is called a Non�Re�ecting Boundary Condition �NRBC�

although a few other names are often used too ���� Naturally
 the quality of
the numerical solution strongly depends on the properties of the NRBC em�
ployed� In the last �� years or so
 much research has been done to develop
NRBCs that after discretization lead to a scheme which is stable
 accurate

e
cient and easy to implement� See ��� for discussion on related issues and
��� and ��� for recent reviews on the subject� Of course
 it is di
cult to �nd a
single NRBC which is ideal in all respects and all cases� this is why the quest
for better NRBCs and their associated discretization schemes continues� G�
Fix has also contributed to this quest� see
 e�g�
 ����
Some low�order local NRBCs have been proposed in the late ���s and

early ���s and have become well�known
 e�g�
 the Engquist�Majda NRBCs ���
and the Bayliss�Gunzburger�Turkel NRBCs ��
 ��� Some of these �nd�order
NRBCs are excellent �all�purpose� conditions
 but due to their limited or�
der of accuracy there are always situations where their performance is not
satisfactory� The late ���s and early ���s have been characterized by the
emerging of the exact nonlocal Dirichlet�to�Neumann �DtN� NRBC �����
���� and the Perfectly Matched Layer �PML� ����� Both are very e�ective
for certain types of problems� However
 both deviate from the �standard
model� of NRBCs� the former in its nonlocality and the latter in the ne�
cessity for a layer with a �nite thickness� We also remark that exact DtN
operators are not available in all con�gurations
 while the performance of
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PML schemes has been demonstrated to be quite sensitive to the computa�
tional parameters when the non�dimensional wave number is small�
Recently
 high�order local NRBCs have been introduced� Sequences

of increasing�order NRBCs have been available before �e�g�
 the Bayliss�
Gunzburger�Turkel conditions ��
 �� constitute such a sequence�
 but they
had been regarded as impractical beyond �nd or �rd order from the im�
plementation point of view� Only since the mid ���s
 practical high�order
NRBCs have been devised� The clear advantage of high�order local NRBCs
is that while they have a standard form which can be imposed on an ar�
ti�cial boundary in conjunction with various computational methods
 they
can be used up to an arbitrarily high order� If in addition they converge in
the sense discussed in ����
 then their accuracy is unlimited� The NRBCs
used in this paper are of this kind�
The �rst such high�order NRBC has apparently been proposed by Collino

����
 for two�dimensional time�dependent waves in rectangular domains� Its
construction requires the solution of the one�dimensional wave equation on
B� Grote and Keller ���� developed a high�order converging NRBC for the
three�dimensional time�dependent wave equation
 based on spherical har�
monic transformations� They extended this NRBC for the case of elastic
waves in ����� Sofronov ���� has independently published a similar scheme in
the Russian literature� Hagstrom and Hariharan ���� constructed high�order
NRBCs for the two� and three�dimensional time�dependent wave equations
based on the analytic series representation for the outgoing solutions of
these equations� It looks simpler than the previous two NRBCs� For time�
dependent waves in a two�dimensional wave guide
 Guddati and Tassoulas
���� devised a high�order NRBC by using rational approximations and re�
cursive continued fractions� Givoli ���� has shown how to derive high�order
NRBCs for a general class of wave problems
 leading to a symmetric �nite
element formulation� In ����
 this methodology was applied to the particular
case of time�harmonic waves
 using optimally localized DtN NRBCs�
In terms of the complexity of designing accurate NRBC�s
 one can dis�

tinguish between three types of linear wave problems� time�harmonic
 time�
dependent in non�dispersive homogeneous media
 and time�dependent in
dispersive and�or strati�ed media� Time�harmonic waves are governed by
the Helmholtz equation and are
 to a large extent
 solved as far as NRBC�s
are concerned �see e�g� ���
 ���� Time�dependent waves
 governed by the
scaler wave equation
 are much more involved� Dispersive and strati�ed�
medium wave problems
 pose the greatest di
culty� In this paper we con�
sider the latter type of problems�
Most of the NRBCs mentioned above have been designed for either time�

harmonic waves or for non�dispersive time�dependent waves� The presence
of wave dispersion or strati�cation makes the time�dependent problem much
more di
cult as far as NRBC treatment is concerned� Dispersive media ap�
pear in various applications� One important example is that of meteorolog�
ical models which take into account the earth rotation ����� Other examples
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include quantum�mechanics waves
 the vibration of structures with rota�
tional rigidity such as beams
 plates and shells
 and many nonlinear wave
problems
 with or without linearization� Very recently
 Navon et al� ����
developed a PML scheme for the dispersive shallow water equations� In the
present paper we develop high�order NRBCs for dispersive waves� Natu�
rally
 our scheme is just as applicable to the non�dispersive case
 by simply
taking the dispersion parameter to be zero�
Higdon NRBC�s have been shown to be quite e�ective in handling dis�

persive wave problems �see e�g� ����������� They were �rst presented and an�
alyzed in a sequence of papers for non�dispersive acoustic and elastic waves
�see e�g� ���������� and were later extended separately to elastic waves in a
strati�ed medium ���� and to dispersive waves in a homogeneous medium
����� However
 in ��������� only low�order Higdon conditions were developed�
Our scheme is based on Higdon�s NRBCs
 extended to the simultaneously
dispersive and strati�ed case� However
 in contrast to the original low�order
formulation of these conditions
 a new scheme is devised here which allows
the easy use of a Higdon�type NRBC of any desired order�
We propose the use of high�order Higdon�NRBC�s in the context of the

two�dimensional Klein�Gordon equation in strati�ed dispersive media� In
Section � a general N �layer strati�ed model is developed� In Sections �
and � we construct and discretize a general J th�order Higdon NRBC� The
interior discretization scheme is developed in Section �� In Section �
 we
describe a dispersive wave problem in a semi�in�nite channel and present a
numerical example� Conclusions and recommendations for further research
appear in Section ��

� General N�Layer Strati�cation Model for

Geophysical Flow

Geophysical �uid �ow is governed by the laws of traditional �uid dynamics

but must also account for the additional e�ects of the Earth�s rotation and
density strati�cation within the medium� Models are based on mass
 mo�
mentum
 and energy conservation principles� A coordinate system based on
the rotating Earth �Fig� �� is utilized� The following simplifying assump�
tions are often invoked to produce a working model�

� The �uid is incompressible and therefore energy conservation consid�
erations are neglected�

� The �uid is inviscid
 hence frictional forces are neglected�
� The �uid density is homogeneous �i�e� not strati�ed� enabling the
decoupling of the continuity equation�

� Centrifugal forces are negated by gravity
 simplifying the momentum
equations�
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Figure �� Coordinate System Based on Rotating Earth

� The curvature of the earth is neglected for domain lengths less than
���� kilometers �����

� The shallow water assumption �e�g� depth�horizontal dimensions� is
imposed
 hence vertical velocity terms are neglected�

� There is no advection and the bottom topography is �at�
Using these assumptions
 one can derive a set of shallow water equations
that model geophysical �ow for a �uid with a constant density �see e�g�
Pedlosky ������ The horizontal momentum equations are�

�u

�t
� u
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�x
� v

�u
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� fv � ��
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where u and v are the horizontal components of velocity in the x� and
y�directions respectively
 f is the Coriolis �or dispersion� parameter that
results from the Earth�s rotation
 and p is pressure� It is easily shown using
hydrostatic principles that�

�p

�x
� �g

�h

�x
and

�p

�y
� �g

�h

�y
� ���

where h is the surface height above a pre�determined reference
 g is the
gravitation parameter
 and � is the density of the medium� The vertical
momentum component is found to be�

�h

�t
�

�

�x
�uh� �

�

�y
�vh� � �� ���
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We now lift the homogeneous �uid assumption and develop a set of
equations to model geophysical �ow in a strati�ed medium� A suitable
medium for a geophysical dynamics is the open ocean where �uid density
is a�ected by salinity and temperature� Salinity changes are slight in this
environment
 and temperature remains relatively constant in the horizontal
directions� However
 temperature does change signi�cantly in the vertical
direction� Therefore we approximate ocean density � to be a function of z
only� Since the �uid is assumed to be incompressible
 � does not vary with
pressure p�
Equations ��� and ��� were derived in part from the conservation of mass

�or continuity� equation for �uids�

��

�t
�r � ���u� � �� ���

where �u is the velocity vector of a �uid element� For homogeneous and
incompressible �uids
 this equation is simpli�ed to�

r � �u � �u

�x
�

�v

�y
�

�w

�z
� �� ���

It can be shown that u and v are independent of z for a constant density
�uid ����� Thus w is uncoupled from u and v yielding�

w�x� y� z� t� � �z
�
�u�x� y� t�

�x
�

�v�x� y� t�

�y

�
� �w�x� y� t�� ���

This critical step in the derivation is no longer possible when we assume
that � is dependent on z�
We extricate ourselves from this conundrum by developing a layered

shallow water approximation where � is constant in each layer �Fig� ���
Here it is assumed that the �uid is still incompressible and that density
�i is constant in each layer Li
 but varies in the di�erent layers� In order
for this strati�cation scheme to be stable
 �i must be monotonic increas�
ing downward ����� Additionally we assume that there is no �uid mixing
between layers�
Using the N �layer model
 the pressure pi at any point in Li is�

pi � P� � g

�
�i��X

j��

�jhj � �i

NX
j�i

�hj � z�

�
A � ���

where P� is a constant ambient pressure at the surface h� and N is the
total number of layers in the model� In ���
 the �rst summation term is the
contribution to pi from the layers above Li� The second summation term is
the contribution to pi from the liquid column in Li� We use ��� and ��� to
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Figure �� N �Layer Shallow Water Model

obtain the horizontal momentum equations in Li�
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where ui
 vi and wi are the x�
 y�
 and z�components of velocity in Li�
Derivation of the vertical momentum equation in Li is more complex�

Since �i is constant in Li
 we can uncouple the continuity equation for Li�

wi�x� y� z� t� � �z
�
�ui�x� y� t�

�x
�

�vi�x� y� t�

�y

�
� �wi�x� y� t�� ���

where wi is a vertical velocity component in Li� For brevity we drop depen�
dent variables from subsequent expressions� At the interface between Li��

and Li 
 the vertical speed component wi is �see ������

wi �
�

�t

NX
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�

�x

NX
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�

�y
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This implies that�
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At the interface between Li and Li��
 the vertical speed component wi is�

wi �
�

�t

NX
j�i��

hj � ui
�

�x

NX
j�i��

hj � vi
�

�y
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which implies that�

�wi �
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�ui NX

j�i��

hj

�
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�y
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j�i��
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�
A � ����

Since �wi is independent of z
 ���� and ���� must be equal� Therefore�

�

�t
hi �

�

�x
�uihi� �

�

�y
�vihi� � �� ����

Equation ���� is the vertical momentum equation for Li� Together with ���
this completes the description of the �uid motion inside of the ith�layer Li�
Before considering a numerical solution we linearize the governing equa�

tions for each layer� We assume that the ui
 vi
 and hi are dominated by
constant terms Ui
 Vi and  i� Superimposed on these are small variations
u�i 
 v

�

i 
 and �i of O���
 i�e��

ui � Ui � u�i � vi � Vi � v�i � and hi �  i � �i� ����

Substituting these in ��� and ���� and neglecting terms of O���� yields�
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If we assume that there is no advection �e�g� Ui � Vi � ��
 then ����
reduces to�
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�
�i��X
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Using methods which are simple generalizations of those used in ���� for
a homogeneous medium �see ���� for details�
 ���� is reduced to a single
equation�

���i

�t�
� g ir�

�
�
�
�i��X

j��

�j

�i
�j �

NX
j�i

�j

�
A
�
�� f��i � Si� ����

where Si is a constant resulting from integration� Equation ���� resembles
Klein�Gordon equation
 which describes dispersive wave behavior� We will
use this model to predict �uid behavior for the N �layer strati�cation model�

� Higdon�s NRBCs

Geophysical �ow occurs in very large domains
 and numerical methods used
to approximate such phenomena can quickly exceed computer capabilities�
We therefore seek to restrict the domain of interest by employing arti�cial
boundaries using methods proposed by Higdon� For a straight boundary
normal to the x�direction
 HJ �a Higdon NRBC of order J� is��

� JY
j��

�
�

�t
� Cj

�

�x

��� ��x� y� t� � �� ����

where Cj is a set of parameters that is chosen to signify phase speeds in the
x�direction� The boundary condition is exact �e�g� no spurious re�ection
at the arti�cial boundary B� for all combinations of waves that propagate
with x�direction phase speeds C�� ��� � CJ � Higdon NRBC�s have many
advantages including�

� Robustness� The re�ection coe
cient R is a product of J factors

which are less than � ����� Thus R becomes smaller as the J increases�
A good choice of Cj �s results in better accuracy
 but spurious re�ection
can still be reduced with non�optimal Cj �s by simply increasing J �
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� General applicability� Most available NRBC�s are either designed for
non�dispersive media �as in acoustics and electromagnetics� or are
of low order �as in meteorology and oceanography�� Higdon NRBC�s
apply to a variety of wave problems including those in dispersive media
�see e�g� ����������� They can be used for one or more dimensions
 and
as we show here
 for layered models�

� Discretization of Higdon�s NRBCs

Because of their algebraic complexity
 discrete Higdon NRBC�s were devel�
oped in the literature up to the third order only� Here we implement ar�
bitrarily high orders using a scheme previously developed Givoli and Neta
����� The Higdon condition HJ is a product of J operators of the form

�

�t
� Cj

�

�x
� ����

These are calculated numerically using second�order FD approximations�

�

�t
� �I � �S�t � �S�t ��

�!t
�

�

�x
� �I � �S�x � �S�x ��

�!x
� ����

where !t is the time�step size
 !x is the x�direction grid spacing
 I is the
identity operator
 and S�t and S�x are backward shift operators de�ned as�

S�t �
n
i�pq � �n��i�pq � S�x �

n
i�pq � �ni�p���q � ����

Here and elsewhere
 �ni�pq is the FD approximation of �i�x� y� t� at grid point
�xp� yq� and at time tn in layer Li� Using ���� and ���� we obtain��

� JY
j��

�
�I � �S�t � �S�t ��

�!t
� Cj

�I � �S�x � �S�x ��
�!x

��� �ni�Eq � � ����

where the index E corresponds to the grid point that marks the arti�cial
boundary� This formula is used to �nd the values on the arti�cial boundary
after the interior point values have been updated�

� The Interior Scheme

A standard second�order central�di�erence scheme is used to discretize �����
Higdon proved that in the context of the scalar Klein�Gordon equation

discrete NRBC�s ���� are stable if such a scheme is used ����� Thus solving
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explicitly for �n��i�pq yields�
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where C�i �
p
g i� We use this interior scheme in the numerical experi�

ments presented at the end of this paper� Since ���� and ���� are explicit

the whole scheme is explicit�

� Numerical Example

Consider a geophysical process that occurs in a semi�in�nite channel �Fig� ���
All assumptions and simpli�cations used to derive the N �layer model apply�
A Cartesian coordinate system �x� y� is introduced such that the channel is
parallel to the x�direction� On the north and south boundaries "N and "S
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Figure �� Semi�In�nite Channel

we specify the Neumann condition�

��i

�y
� � for i � ����N� ����
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On the west boundary "W we prescribe �i using a Dirichlet condition
 i�e�


�i��� y� t� � �
Wi
�y� t� for i � ����N� ����

where �
Wi
�y� t� is a given function for an incoming wave or disturbance� At

x � � the solution is bounded and does not include any incoming waves�
The initial conditions are�

�i�x� y� �� � ��
��i�x� y� ��

�t
� � for i � ����N� ����

To obtain a well�posed problem in a �nite domain 	 we impose a high�order
Higdon�NRBC on the east boundary "E �
We now apply the new strati�cation scheme to a test problem using

the semi�in�nite wave�guide� A channel width b � � and depth d � �� are
selected �note that d is not a model parameter
 but to satisfy the shallow
water assumption
 it must be true that depth � horizontal dimensions��
The strati�ed medium is modeled with six layers� The layer thicknesses
from top to bottom are �i � f���� ���� ���� ���� ���� ���g� The density for
each layer is given by �

i
� f�� ����� ���� ����� ���� ����g� A gravitational

parameter g � �� and a dispersion parameter f � �� is used�
The boundary function �

W
on "W is stipulated to simulate two geophys�

ical events� A surface disturbance
 akin to the wind acting on the ocean
 is
initiated in L� by setting�

�
W�
�y� t� �



����� cos

	
�
�
�y � ����
 sin�t � � t � ���� 


� otherwise�

����

Note that the maximum amplitude of the disturbance is small relative to
the layer thickness �� � ��� so that the validity of the model
 which is based
on perturbation analysis
 is not violated� A second disturbance
 simulating
seismic activity on the ocean �oor
 is initiated in the L� and given by�

�
W�
�



���� if jy � ���j � ��� # � � t � ��� 


� otherwise �

����

All other values for �
Wi
are zero� The simulation is run for �� time units�

The problem is solved for three di�erent scenarios� First
 an extended
domain D is constructed using a �� � � rectangle with a �� � �� mesh to
compute a reference solution �ref � Then two additional solutions
 �Case �

and �
Case �


 are computed on a truncated domain 	 in which an arti�cial
boundary B imposed at x � �� A �� � �� mesh is used on the resulting
� � � square so that the mesh for 	 and D are identical in the truncated
region� For �

Case �

 a Higdon NRBC of order J � � with parameters Cj �

f�� �� �� �� �g is used for each layer� For �
Case �


 J � � and Cj � f�� �g is
used� Note that the value � in each case represents the total perturbation
on the domain surface and is the sum of the perturbations of each layer�

��



The reference solution �ref is then juxtaposed with �
Case �

and �
Case �

both graphically and quantitatively� The numerical solutions are used to
obtain error measurements kenk at time tn which are calculated by�

kenkCase i
�

NxX
i��

NyX
j��

s
��ref �xi� yj � tn�� �

Case i
�xi� yj � tn���

NxNy

� ����

where Nx and Ny are determined by grid spacing� In both cases
 the error
at the surface and for each layer interface is plotted versus time� Note that
the size of D precludes spurious re�ections from polluting �ref � Therefore
kek serves as a measure of spurious re�ection at B�
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Figure �� Higdon NRBC Comparison �Solution at t���

At time t � � �Fig� ��
 the surface disturbance in L� has populated 	
and is now visible D� In addition
 the bottom disturbance has been initi�
ated and is propagating in 	� Both �

Case �
and �

Case �
exhibit wave traces

similar to those in �ref � However
 kekCase �
is an order of magnitude smaller

than kek
Case �

� This demonstrates that increasing the Higdon NRBC order
reduces spurious re�ection�
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Figure �� Higdon NRBC Comparison �Solution at t����

At time t � �� �Fig� ��
 the surface disturbance
 which ended at t �
����
 continues to propagate in 	 and D� The bottom disturbances has
successfully passed through "E without a signi�cant increase in spurious
re�ection� The wave trace for �

Case �
closely resembles that of �ref 
 however

deviations in �
Case �

are now visible� This example demonstrates that a
properly constructed Higdon NRBC can be used to restrict the domain of
the N �layer strati�cation model governed by the linearized shallow water
equation�
We now consider the behavior of the perturbation at each layer interface

as predicted by the model� To accomplish this
 �lled contour plots were
constructed for the surface and the �ve layer interfaces using data obtained
from �

Case �
� All contours and color schemes are relative to the total surface

perturbation�
The �rst comparison is again at t � � �Fig� ��� We note the surface

event has not only propagated across 	
 but it has also propagated through
the layers� From the contours we see that the magnitude of the response to
the surface event is damped with each successive layer downward� However
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Figure �� Layer Interface Perturbation Comparison �Solution at t���

the wave appears to maintain its character throughout the layers as far as
wave speed and geometric dispersion is concerned� We also note that the
bottom layer event on the left side of the plot has immediately propagated
to the upper layers� This is reasonable since the �uid is incompressible�
However
 as the wave propagates through 	
 the e�ect on the lower layers
once again damps out�
At t � ��
 the damping phenomenon in the lower layers is more pro�

nounced �Fig� ��� However
 there is an exception on right side of the plot�
In this regime
 the perturbation is nearly zero and a�ected primarily by
spurious re�ection from B� Di�erences in each layer�s re�ection may have
caused this visible anomaly in which the perturbation in the lower layers is
more pronounced than in the surface layer� The overall results of the model
do however seem reasonable� Submarines that transit the ocean depths are
relatively una�ected by raging storms on the ocean�s surface�
We now compare the six�layer model with a two�layer and single�layer

model� For this we set up the parameters for two�layer model as follows�
�i � f���� ���g and �i � f���� ����g� Essentially we have combined the upper
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�ve layers of the six�layer model
 taken their average density
 and used this
to represent the �rst layer of the two�layer model� The second layer of the
two�layer model is the same as the bottom layer of the six�layer model� The
parameters for the single�layer model are � � �� and � � ����� �note that
from ���� we conclude that density is not a parameter in the single�layer
model and therefore the value for � is irrelevant �� The problem is again run
for �� time units
 however the domain is extended to x � �� for each model
and a ��� �� mesh is used� This eliminates arti�cial boundary e�ects and
comparisons can be made without concern for spurious re�ection� All other
parameters are the same�
The results of the three models are presented for t � �� �Fig� ��� Com�

paring the contours of the models reveal the surface e�ect is reduced as the
number of layers increase� Hence
 the single�layer representation tends to
over�predict surface wave action�
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	 Observations and Recommendations for

Further Research

From the numerical example in the previous section we can make several
observations� We have shown that Higdon NRBC�s are e�ectively employed
to restrict the domain for the N �layer density model� With regards to
this model itself
 we observed that surface disturbances propagate to lower

denser layers
 although their e�ect is dampened in each successive layer�
The model also predicts that bottom disturbances propagate immediately
to the upper levels
 however
 as they propagate horizontally
 their e�ect
is once again damped in the lower
 denser layers� Both observations seem
reasonable and mimic real ocean behavior� Finally we observed that the
presence of dense lower layers dampen surface wave action�
Several recommendations are o�ered to expand and explore this model

further� The addition of Higdon NRBC�s to the west
 north
 and south

��



boundaries would allow us to reframe the problem domain as a �patch
of open ocean� vice a �truncated semi�in�nite channel with hard walls��
We could further expand the model by considering the e�ects of advection
and a bottom contour that is not �at� Finally
 we could construct layer
versus density pro�les that represent known ocean areas� In addition we
might de�ne forcing functions that better simulate weather patterns
 seismic
events
 or other geophysical phenomena� Using these
 we could compare the
model�s prediction against known data�
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