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Abstract

Problems of linear time-dependent dispersive waves in an unbounded domain are con-
sidered. The infinite domain is truncated via an artificial boundary B, and a high-order
Non-Reflecting Boundary Condition (NRBC) is imposed on B. Then the problem is solved
by a Finite Difference scheme in the finite domain bounded by B. The sequence of NRBCs
proposed by Higdon is used. However, in contrast to the original low-order implementation
of the Higdon conditions, a new scheme is devised which allows the easy use of a Higdon-type
NRBC of any desired order. In addition, a procedure for the automatic choice of the param-
eters appearing in the NRBC is proposed. The performance of the scheme is demonstrated
via numerical examples.

Keywords: Waves, High-order, Artificial boundary, Non-reflecting boundary condition,
Higdon, Finite Difference.
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1. Introduction

In many fields of application involving the propagation of waves, the domain of the problem
under investigation is unbounded (or very large). One of the common methods used for the
numerical solution of such problems [1] is the method of Non-Reflecting Boundary Condi-
tions. In this method the original domain is truncated via an artificial boundary B, thus
forming a finite computational domain Ω bounded by B. A special boundary condition is
imposed on B, in order to complete the statement of the problem (i.e., make the solution
unique) and, most importantly, to ensure that no (or little) spurious wave reflection occurs
from B. Then the problem is solved numerically in Ω.

The boundary condition applied on B is called a Non-Reflecting Boundary Condition
(NRBC), although a few other names are often used too [2]. Naturally, the quality of the
numerical solution strongly depends on the properties of the NRBC employed. In the last
25 years or so, much research has been done to develop NRBCs that after discretization lead
to a scheme which is stable, accurate, efficient and easy to implement. See [3] and [4] for
recent reviews on the subject. Of course, it is difficult to find a single NRBC which is ideal
in all respects and all cases; this is why the quest for better NRBCs and their associated
discretization schemes continues.

Some low-order local NRBCs have been proposed in the late 70’s and early 80’s and have
become well-known, e.g., the Engquist-Majda NRBCs [5] and the Bayliss-Turkel NRBCs [6].
The late 80’s and early 90’s have been characterized by the emerging of the exact nonlo-
cal Dirichlet-to-Neumann (DtN) NRBC [7, 8] and the Perfectly Matched Layer (PML) [9].
More recently, high-order local NRBCs have been introduced. Sequences of increasing-order
NRBCs have been available before (e.g., the Bayliss-Turkel conditions [6] constitute such
a sequence), but they had been regarded as impractical beyond 2nd or 3rd order from the
implementation point of view. Only since the mid 90’s, practical high-order NRBCs have
been devised.

The first such high-order NRBC has apparently been proposed by Collino [10], for two-
dimensional time-dependent waves in rectangular domains. Its construction requires the
solution of the one-dimensional wave equation on B. Grote and Keller [11] developed a high-
order converging NRBC for the three-dimensional time-dependent wave equation, based
on spherical harmonic transformations. They extended this NRBC for the case of elastic
waves in [12]. Sofronov [13] has independently published a similar scheme in the Russian
literature. Hagstrom and Hariharan [14] constructed high-order NRBCs for the two- and
three-dimensional time-dependent wave equations based on the analytic series representation
for the outgoing solutions of these equations. It looks simpler than the previous two NRBCs.
For time-dependent waves in a two-dimensional wave guide, Guddati and Tassoulas [15] de-
vised a high-order NRBC by using rational approximations and recursive continued fractions.
Givoli [16] has shown how to derive high-order NRBCs for a general class of wave problems,
leading to a symmetric finite element formulation. In [17], this methodology was applied to
the particular case of time-harmonic waves, using optimally localized DtN NRBCs.

Most of the NRBCs mentioned above have been designed for either time-harmonic waves
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or for non-dispersive time-dependent waves. The presence of wave dispersion makes the time-
dependent problem much more difficult as far as NRBC treatment is concerned. Dispersive
media appear in various applications. One important example is that of meteorological
models which take into account the earth rotation [18]. Other examples include quantum-
mechanics waves, the vibration of structures with rotational rigidity such as beams, plates
and shells, and many nonlinear wave problems, with or without linearization. Very recently,
Navon et al. [19] developed a PML scheme for the dispersive shallow water equations. In the
present paper we develop high-order NRBCs for dispersive waves. Naturally, our scheme is
just as applicable to the non-dispersive case, by simply taking the dispersion parameter to
be zero.

Higdon [20] proposed a sequence of NRBCs for the dispersive (Klein-Gordon) wave equa-
tion. In fact, these NRBCs were developed originally for non-dispersive waves [21]–[25],
but Higdon showed in [20] that they can be applied in the dispersive case too. Indeed, our
scheme is based on Higdon’s NRBCs. However, in contrast to the original low-order for-
mulation of these conditions, a new scheme is devised here which allows the easy use of a
Higdon-type NRBC of any desired order. In addition, a procedure for the automatic choice
of the parameters appearing in the NRBC is proposed.

Following is the outline of the rest of this paper. In Section 2 we state the problem under
investigation. We emphasize that the setup taken here, namely that of a semi-infinite wave
guide, serves merely as an example, and in fact the proposed approach is general and can
easily be extended to other configurations, such as two-dimensional exterior problems with a
rectangular artificial boundary. In Section 3 we present the Higdon NRBCs and briefly recall
their properties. In Section 4 we show how to implement the Higdon NRBCs, using a Finite
Difference (FD) scheme, in a high-order way. Then we show, in Section 5, how the basic
FD approximations used in this scheme can be improved if one desires, and in Section 6 we
present a procedure for the automatic choice of the NRBC parameters. We demonstrate the
performance of the new method via some numerical examples in Section 7. We conclude, in
Section 8, with some remarks.

2. Statement of the Problem

We consider the linear inhomogeneous Klein-Gordon equation,

∂2
t u− C2

0∇2u+ f 2u = S , (1)

in a two-dimensional uniform semi-infinite channel or wave guide. A Cartesian coordinate
system (x, y) is introduced such that the wave-guide is parallel to the x direction. The width
of the wave-guide is denoted b. The setup is shown in Fig. 1(a). In (1), u is the unknown
wave field, C0 is the given reference wave speed, f is the given dispersion parameter, and S is
a given wave source function. The C0 and f are allowed to be functions of location; however,
it is assumed that the region where they are not constant is finite (and typically located
near the west boundary ΓW ). The wave source S is a function of location and time, but it
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is assumed to have a local support. Eq. (1) describes, for example, the lateral vibration of
a membrane strip on an elastic foundation, or the acoustic pressure in a dispersive medium
(say, a linearized bubbly medium). Also, it can be shown that the linearized shallow water
equations, with a flat bottom and zero initial conditions, reduce to (1), where u is the water
elevation above the reference level [18]. In the geophysical context, f is called the Coriolis
parameter and is related to the angular velocity of the earth.
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Figure 1: Setup for the wave-guide problem: (a) the original problem in a semi-infinite wave
guide; (b) the computational problem in a finite domain Ω.

On the south and north boundaries ΓS and ΓN we specify the Neumann condition:

∂yu = 0 on ΓS & ΓN . (2)

In acoustics this corresponds to a “hard wall” condition. On the west boundary ΓW we
prescribe u using a Dirichlet condition, i.e.,

u(0, y, t) = uW (y, t) on ΓW , (3)

where uW (y, t) is a given function (incoming wave). At x→∞ the solution is known to be
bounded and not to include any incoming waves.

To complete the statement of the problem, the initial conditions

u(x, y, 0) = u0 , ∂tu(x, y, 0) = v0 , (4)

are given at time t = 0 in the entire domain. We assume that the functions u0 and v0 have
a local support.
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We now truncate the semi-infinite domain by introducing an artificial east boundary
B ≡ ΓE, located at x = xE . See Fig. 1(b). This boundary divides the original semi-infinite
domain into two subdomains: an exterior domain D, and a finite computational domain Ω
which is bounded by ΓW , ΓN , ΓS and ΓE . We choose the location of ΓE such that the entire
support of S, u0 and v0 and the region of non-uniformity of C0 and f are all contained inside
Ω. Thus, on ΓE and in D, the homogeneous counterpart of (1) holds, i.e.,

∂2
t u− C2

0∇2u+ f 2u = 0 , (5)

with constant coefficients C0 and f 2, and the medium is initially at rest.
To obtain a well-posed problem in the finite domain Ω we need to impose a boundary

condition on ΓE. This must be a Non-Reflecting Boundary Condition (NRBC), so as to
prevent spurious reflection of waves. In the next section we discuss the choice of this NRBC.

3. Higdon’s NRBCs

On the artificial boundary ΓE we use one of the Higdon NRBCs [20]. These NRBCs were
presented and analyzed in a sequence of papers [21]–[25] for non-dispersive acoustic and
elastic waves, and were extended in [20] for the dispersive case. The Higdon NRBC of order
J is

HJ :


 J∏

j=1

(∂t + Cj∂x)


u = 0 on ΓE . (6)

Here, the Cj are parameters which have to be chosen and which signify phase speeds in the
x-direction. The main advantages of the Higdon conditions are as follows:

• The Higdon NRBCs are very general, namely they apply to a variety of wave problems,
in one, two and three dimensions and in various configurations. Moreover, they can be
used, without any difficulty, for dispersive wave problems and for problems with layers.
Most other available NRBCs are either designed for non-dispersive homogeneous media
(as in acoustics and electromagnetics) or are inherently of low order (as in meteorology
and oceanography).

• The Higdon NRBCs constitute a sequence of conditions of increasing order. This, and
the fact that no asymptotic approximation is involved in their construction, enables one
in principle (leaving implementational issues aside for the moment) to obtain solutions
with unlimited accuracy.

• For certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs
that are derived from rational approximation of the dispersion relation (the Engquist-
Majda conditions [5] being the most well-known example). This has been proved by
Higdon in [20, 21]. More precisely, Higdon’s theorem states that if a NRBC is based
on a symmetric rational approximation to the dispersion relation corresponding to
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outgoing waves, then it is either (a) equivalent to (6) for a suitable choice of J and
the parameters Cj, or (b) unstable, or (c) not optimal. Lack of optimality means
here that the coefficients in the NRBC can be modified so as to reduce the amount of
the spurious reflection. Thus, the Higdon NRBCs can be viewed as generalization of
rational-approximation NRBCs.

The scheme developed here is different than the original Higdon scheme [20] in the fol-
lowing ways:

(a) The discrete Higdon conditions were developed in the literature up to third order only,
because of their algebraic complexity which increases rapidly with the order. Here
we show how to easily implement these conditions to an arbitrarily high order. The
scheme is coded once and for all for any order; the order of the scheme is simply an
input parameter.

(b) The Higdon NRBCs involve some parameters which must be chosen. Higdon [20] dis-
cusses some general guidelines for their manual a-priori choice by the user. We shall
show how these parameters can be chosen automatically.

(c) We shall show how to improve the discretization of the basic operators involved in the
Higdon NRBCs, by using more accurate FD stencils, and how to incorporate these
improved discretizations in the new scheme.

We now make a few remarks recalling the properties of the Higdon NRBCs.

1. The boundary condition (6) is exact for all waves that propagate with an x-direction
phase speed equal to either of C1, . . . , CJ . To see this, consider a wave which satisfies
the wave equation (5) with constant C0 and f . Such a wave has the form

u = A cos
nπy

b
cos(kx− ωt+ ψ) , (7)

where

ω2 = C2
0

(
k2 +

n2π2

b2

)
+ f 2 , n = 0, 1, 2, . . . (8)

Also, let

Cx =
ω

k
, (9)

which is the x-direction phase velocity. In (7)–(9), A is the wave amplitude, ψ is its
phase, k is the x-component wave number, and ω is the wave frequency. Eq. (8) is the
dispersion relation. In general, solutions of (5) consist of an infinite number of waves
of the form (7). There are also solutions that decay exponentially in the x direction;
however, they are usually not of great concern, since the decaying modes are expected
to be insignificant at the time they reach ΓE. Now, it is easy to verify that if one of
the Cj’s in (6) is equal to Cx, then the wave (7) satisfies the boundary condition (6)
exactly.
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2. From (8) and (9) we have

Cx =

√
C2

0 +
C2

0n
2π2/b2 + f 2

k2
, n = 0, 1, 2, . . . (10)

Thus, always Cx ≥ C0; hence one should take Cj ≥ C0.

3. The first-order condition H1 is a Sommerfeld-like boundary condition. If we set C1 =
C0 we get the classical Sommerfeld-like NRBC. A lot of work in the meteorological
literature is based on using H1 with a specially chosen C1. Pearson [26] used a special
but constant value of C1, while in the scheme devised by Orlanski [27] and in later
improved schemes [28]–[31] the C1 changes dynamically and locally in each time-step
based on the solution from the previous time-step. Some of the limited-area weather
prediction codes used today are based on such schemes, e.g., COAMPS [32]. See also
the recent papers [33]–[35] where several such adaptive H1 schemes are compared.

4. The condition HJ involves normal and temporal derivatives up to Jth-order. In fact,
it has the form

J∑
j=0

wj ∂
j
x∂

J−j
t u = 0 , (11)

which is obtained by expanding (6). Finding the general formula for the coefficients
wj in (11) is difficult, but fortunately we shall not need it in our new scheme.

5. It is easy to show (see Higdon [20] for a similar setting) that when a wave of the
form (7) impinges on the boundary ΓE where the NRBC HJ is imposed, the resulting
reflection coefficient is

R =
J∏

j=1

∣∣∣∣∣Cj − Cx

Cj + Cx

∣∣∣∣∣ . (12)

Again we see that if Cj = Cx for any one of the j’s then R = 0, namely there is no
reflection and the NRBC is exact. Moreover, we see that the reflection coefficient is a
product of J factors, each of which is smaller than 1. This implies that the reflection
coefficient becomes smaller as the order J increases regardless of the choice made for
the parameters Cj. Of course, a good choice for the Cj would lead to better accuracy
with a lower order J , but even if we miss the correct Cj’s considerably (say, if we make
the simplest choice Cj = C0 for j = 1, . . . , J), we are still guaranteed to reduce the
spurious reflection as we increase the order J . This is an important property of the
Higdon’s NRBCs and is the reason for their robustness.

6. In [23], Higdon points to the possibility of a long-time instability that might occur when
one uses a NRBC with high-order derivatives. If the interior governing equations and
the NRBC both admit solutions at zero wave number and frequency, and if the data
in the problem include such “zero modes,” then a slowly-growing smooth instability is
possible. Whether this shows up in practice depends on the order of the derivatives
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in the NRBC and on the number of spatial dimensions. However, these difficulties do
not arise in the presence of dispersion, or if the data are confined to nontrivial modes.

4. Discretization of Higdon’s NRBCs

The Higdon condition HJ given by (6) is a product of J operators of the form ∂t + Cj∂x.
Consider the following FD approximations:

∂t � I − S−
t

∆t
, ∂x � I − S−

x

∆x
. (13)

In (13), ∆t and ∆x are, respectively, the time-step size and grid spacing in the x direction,
I is the identity operator, and S−

t and S−
x are shift operators defined by

S−
t u

n
pq = un−1

pq , S−
x u

n
pq = un

p−1,q . (14)

Here and elsewhere, un
pq (and also un

p,q) is the FD approximation of u(x, y, t) at grid point
(xp, yq) and at time tn. We use (13) in (6) to obtain:


 J∏

j=1

(
I − S−

t

∆t
+ Cj

I − S−
x

∆x

)un
Eq = 0 . (15)

Here, the index E correspond to a grid point on the boundary ΓE . Higdon has solved this
difference equation (and also a slightly more involved equation that is based on time- and
space-averaging approximations for ∂x and ∂t; see next section) for J ≤ 3 to obtain an
explicit formula for un

Eq. This formula is used to find the current values on the boundary
ΓE after the solution in the interior points and on the other boundaries has been updated;
thus it is an explicit formula. The formula for J = 2 is found in [25], and the one for J = 3
appears in the appendix of [24]. The algebraic complexity of these formulas increases rapidly
with the order J . It is thus not surprising that we have not found in the literature any report
on the implementation of the Higdon NRBCs beyond J = 3.

Now we show how to implement the Higdon NRBCs to any order using a simple algorithm.
To this end, we first multiply (15) by ∆t and rearrange to obtain

Z ≡

 J∏

j=1

(
ajI + djS

−
t + ejS

−
x

)un
Eq = 0 , (16)

where

aj = 1 +
Cj∆t

∆x
, (17)

dj = −1 , (18)

ej = −Cj∆t

∆x
. (19)
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The coefficient dj actually does not depend on j, but we keep this notation to allow easy
extensions to the scheme (see next section). Now, Z in (16) can be written as a sum of 3J

terms, each one is an operator acting on un
Eq, namely

Z ≡
3J−1∑
m=0

AmPmu
n
Eq = 0 . (20)

Here Am is a coefficient depending on the aj, dj and ej , and Pm is an operator involving
products of I, S−

t and S−
x . All the terms in the sum in (20) are computable at the current

time step n, except the one which involves only the identity operator and no shift operators.
If we let this term correspond to m = 0, then P0 = I and

A0 =
J∏

j=1

aj . (21)

Thus we get from (20)
Z ≡ A0u

n
Eq + Z∗ = 0 , (22)

where

Z∗ =
3J−1∑
m=1

AmPmu
n
Eq . (23)

From (22) we get
un

Eq = −Z∗/A0 , (24)

which is the desired value of u on the boundary ΓE.
The problem now reduces to calculating Z∗ given by (23). We do this using the algorithm

described in Box 1. The basic idea is to calculate the coefficients Am and the operator actions
Pmu

n
Eq term by term. This is done systematically by transforming the integer counter m to

a number in base 3 with J digits. The Am and Pm are not simple functions of the decimal
representation of the number m, but they are simple functions of the digits of the base-3
representation of m.

Note that we need to store un̂
îq

values for î = E,E−1, . . . , E−J and n̂ = n, n−1, . . . , n−J .

In other words, we have to store the history of the values of u for a layer of thickness J + 1
points near the boundary ΓE and for J + 1 time levels (including the current one). If there
are Ny grid points in the y direction, then the amount of storage needed in a simple storage
scheme is (J + 1)2Ny. However, one can save in storage by exploiting the fact that not all
values un̂

îq
are needed, but only those for which (E − î) + (n − n̂) ≤ J . This is clear from

(11) and also from (16). For example, the solution at time tn−J should be stored only for
points on the boundary ΓE itself.

Higdon [20] has proved, in the context of the scalar Klein-Gordon equation (5), that the
discrete NRBCs (15) are stable if the interior scheme is the standard second-order centered
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• Start with Z∗ = 0. Calculate A0 =
∏J

j=1 aj .

• Loop over the integers m = 1, . . . , 3J − 1.

– For a given m, transform m into a number r in base 3, consisting of the digits 0,
1 and 2 only. The length of r will be at most J digits. Store the J digits of r in
the vector Dr(j), j = 1, . . . , J .
Example: Suppose that J = 6 and m = 227. Since 227 in base 3 is r = 22102, we
will get Dr = { 0 2 2 1 0 2 } .

– Use Dr to calculate the coefficient Am. To this end, start with Am = 1, loop over
j = 1, . . . , J , and for each j multiply Am by the factor aj (if Dr(j) = 0) or dj (if
Dr(j) = 1) or ej (if Dr(j) = 2).
Example: For J = 6 and m = 227, we have received the vector Dr above. Then
A227 = a1e2e3d4a5e6 .

– Use Dr to calculate the operator action Pmu
n
Eq. To this end, start with n̂ = n and

î = E, loop over j = 1, . . . , J , and for each j subtract 1 from n̂ (if Dr(j) = 1) or
subtract 1 from î (if Dr(j) = 2) or do nothing (if Dr(j) = 0). After the loop ends
we have Pmu

n
Eq = un̂

îq
.

Example: For the case J = 6 and m = 227 considered above, we get n̂ = n − 1
(because the digit “1” appears only once in Dr), and î = E−3 (because the digit
“2” appears three times in Dr). Hence P227u

n
Eq = un−1

E−3,q.

– Update: Z∗ ← Z∗ + Amu
n̂
îq
.

• Next m.

• un
Eq = −Z∗/A0.

Box 1. Algorithm for implementing the Higdon NRBC of order J .
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difference scheme

un+1
pq = 2un

pq − un−1
pq +

(
C0∆t

∆x

)2 (
un

p+1,q − 2un
pq + un

p−1,q

)

+

(
C0∆t

∆y

)2 (
un

p,q+1 − 2un
pq + un

p,q−1

)
− (f∆t)2un

pq . (25)

We use this interior scheme in the numerical experiments presented in Section 7. Since both
(25) and the discretized Higdon NRBC are explicit, the whole scheme is explicit.

An alternative formulation of the Higdon NRBC, where all the high-order derivatives
are eliminated by the use of auxiliary variables, is currently under development and will be
reported in a future publication.

5. Improved Discrete Higdon NRBCs

The discretization scheme described in the previous section is based on the basic FD ap-
proximations given by (13). These approximations can be improved in several ways. For
example:

(a) We can take

∂t � I − S−
t

∆t

(
(1− b)I + bS−

x

)
, ∂x � I − S−

x

∆x

(
(1− b)I + bS−

t

)
, (26)

where 0 ≤ b ≤ 1. Thus, the temporal difference is calculated with a weighted average
in space while the spatial difference is calculated with a weighted averaged in time.
The formulas (13) correspond to b = 0. In [20], Higdon has used this approximation
with b = 0.5, and reported a slight improvement in the results compared to the use of
(13).

(b) We can take one-sided approximations for the x- and t-derivatives [36], i.e.,

∂t � 3I − 4S−
t + (S−

t )2

2∆t
, ∂x � 3I − 4S−

x + (S−
x )2

2∆x
. (27)

These approximations are second-order accurate, as opposed to those in (13) which are
first-order accurate.

(c) We can combine the two types of approximations given above, namely

∂t � 3I − 4S−
t + (S−

t )2

2∆t

(
(1− b)I + bS−

x

)
, ∂x � 3I − 4S−

x + (S−
x )2

2∆x

(
(1− b)I + bS−

t

)
.

(28)



High-Order NRBCs for Dispersive Waves 13

The procedure described in the previous section for implementing the Higdon NRBCs
can easily be modified to admit each of these improved approximations. The main feature
that has to be changed in the algorithm outlined in Box 1 is the base to which the counting
decimal integer m is transformed. For example, consider the weighted approximation (26)
replacing (13). In this case (16), which involves three basic operators (I, S−

t and S−
x ) is

replaced by

Z ≡

 J∏

j=1

(
ajI + djS

−
t + ejS

−
x + gjS

−
t S

−
x

)un
Eq = 0 , (29)

which involves four basic operators (I, S−
t , S−

x and S−
t S

−
x ). Therefore, the counter m in the

main loop in Box 1 will range from 1 to 4J − 1, and all the calculation will be performed
in base 4 rather than in base 3. Similarly, the approximations (27) and (28) will require
calculations in base 5 and base 8, respectively. The alternations needed in the coding are
minor, but naturally the computational time associated with these improved approximations
would increase dramatically.

We note that when one uses a high-order Higdon NRBC, the discrete operator involved
is of high-order even when the simplest formulas (13) are used to approximate the x- and
t-derivatives. Thus, the importance of the improvements discussed above diminishes when J
increases. In fact, it is probably worthwhile to incorporate such improvements in the scheme
only if a low-order condition (say, J ≤ 3) is employed.

6. Controlling the Parameters

The Higdon NRBCs involve the parameters Cj which must be chosen. There are three
approaches in this context:

(a) The user chooses the Cj a-priori in a manual manner based on an “educated guess.”
This is the procedure recommended in Higdon’s papers [20]–[25].

(b) The Cj are chosen automatically by the computer code as a preprocess.

(c) The Cj are not constant, but are determined dynamically by the computer code. Namely,
a value for Cj is estimated for every grid point on the boundary at each time step,
from the solution in the previous time-steps.

We have adopted approach (b), which is automatic yet very inexpensive computationally.
The algorithm we propose is described in Box 2. It is based on the maximum resolvable
wave numbers in the x and y directions, and on the minimax formula [37] for choosing the
x-component wave numbers.
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• Given the grid parameter ∆x, estimate the maximum resolvable wave number k in the
x direction. Assuming a maximum of 10 grid points per wave length, a reasonable
estimate is

kmax =
π

5∆x
.

• Choose J − 1 values of k from the interval (0, kmax). This is done using the symmetric
minimax formula (based on the Chebyshev polynomial) proposed by Sommeijer et
al. [37]:

kj =

[
k2

max

2

(
1 + cos

(
2j − 1

2(J − 1)
π

))] 1
2

, j = 1, . . . , J − 1 .

• Given the grid parameter ∆y, estimate the maximum resolvable wave number ky in
the y direction. Again assuming a maximum of 10 grid points per wave length, a
reasonable estimate is

(ky)max =
π

5∆y
.

• For each kj, calculate the corresponding (and maximal in the y direction) frequency
ωj from the dispersion relation (8):

ωj =

√
C2

0

[
k2

j + (ky)2
max

]
+ f 2 .

• Calculate
Cj =

ωj

kj
for j = 1, . . . , J − 1 .

• Add the value C0 (the minimum possible phase speed) to the J − 1 values calculated
above. These constitute the desired J values Cj.

Box 2. Algorithm, used as a preprocess, for determining the parameters Cj in the Higdon
NRBC.
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7. Numerical examples

We first apply the new scheme to a simple test problem whose exact solution is synthesized
a priori. We consider the wave-guide problem described in Section 2 and illustrated in Fig.
1(a). We set b = 5, C0 = 1 and f = 0.5. The boundary function uW (y, t) on ΓW and
the initial conditions are those that correspond to a solution u(x, y, t) which is a linear
combination of three waves of the form (7), i.e.,

u =
3∑

m=1

Am cos
nmπy

b
cos(kmx− ωmt) . (30)

The parameters chosen in (30) are:
Am = 1, 1, 1 ;
nm = 1, 2, 2 ;
ωm = 0.81, 1.37, 1.68 .
This corresponds to the three phase velocities (obtained from (10)):
Cx/C0 =7.61, 6.27, 1.69 .
The km in (30) are obtained from the ωm and the nm via the dispersion relation (8).

We introduce the artificial boundary ΓE (see Fig. 1(b)) at xE = 5. Thus, the compu-
tational domain Ω is a 5 × 5 square. In Ω we use a uniform grid with 21 × 21 points. We
discretize the Klein-Gordon equation in Ω using the explicit central-difference FD interior
scheme (25). On ΓE we impose the Higdon NRBC implemented in its high-order form.
The time-step size is ∆t = 0.025, which is smaller than the CFL limit and thus guarantees
stability.

In Figs. 2(a)–(d), we plot the solution u at the point x = 5, y = 2.75 (located on ΓE) as
a function of time. In each of the four figures the exact solution is compared to a number
of numerical solutions obtained with different NRBC schemes, namely with different choices
of the order J and the parameters Cj. First we choose Cj = 1 for all j. Fig. 2(a) shows the
H1, H2 and H3 solutions. Their accuracy is poor, although the H3 solution is significantly
better than the other two. Fig. 2(b) shows the H5 and H7 solutions. The H7 solution is
quite accurate in the entire time interval shown. Thus, if the Cj’s are not specially chosen,
we need the order of the Higdon NRBC to be as high as 7 for high accuracy.

Now we employ the procedure given by Box 2 to automatically choose the Cj’s. Fig. 2(c)
shows the resulting H3, H4 and H5 solutions. We see that in this case the approach of the
numerical solutions to the exact solution is monotone. Moreover, for J = 5 we get about
the same level of accuracy as we did with J = 7 when all the Cj had the value one (Fig.
2(b)). For additional reference, we show in Fig. 2(d) the H3 solution obtained with the Cj

corresponding to the three phase velocities Cx of the exact solution. It is about as accurate
as the H5 solution in Fig. 2(c). We also show the H4 solution obtained with the exact C1,
C2, C3 and with C4 = 1. The numerical solution is indistinguishable from the exact solution.
In this case not only the NRBC is exact, but we gain additional accuracy on the boundary
due to the increased order of the FD scheme.

This example demonstrates, albeit in a simplified setting, that the same level of accuracy
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obtained with parameter values Cj that are well-estimated can be achieved with ill-chosen
parameter values but with an increased order J . Of course, increasing the order to ensure
high accuracy is computationally expensive, and therefore it is usually beneficial to use the
algorithm given in Box 2.

We now consider another problem in the same wave-guide, again with b = 5, C0 = 1 and
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Figure 2: Solution of the three-wave test problem: u at the point x = 5, y = 2.75 (on ΓE)
as a function of time. (a) Exact solution and the H1, H2 and H3 solutions with Cj = 1. (b)
Exact solution and the H5 and H7 solutions with Cj = 1. (c) Exact solution and the H3,
H4 and H5 solutions with automatically chosen Cj. (d) Exact solution and the H3 and H4

solutions with the exact Cj.



High-Order NRBCs for Dispersive Waves 17

f = 0.5. The initial conditions are all zero, and the boundary function uW on ΓW is given
by

uW (y, t) =




cos
[

π
2r

(y − y0)
]

if |y − y0| ≤ r & t ≤ t0

0 otherwise

(31)

Thus, the wave source on the west boundary is a cosine function in y with three parameters:
its center location y0, its width r, and its time duration t0. We set y0 = 2.5, r = 1.5, and
t0 = 0.5. In contrast to the previous test problem, the solution of this problem involves an
infinite number of modes and frequencies.

The computational parameters xE , ∆t and the grid are the same as in the previous
example. However, here we use the Higdon NRBC H4 on ΓE , with the four Cj’s obtained
automatically by using the procedure given in Box 2. These turn out to be Cj/C0 = 1, 3.6,
4.5 and 10.6.

We compare the solution obtained by the new scheme with two other solutions:

• A solution obtained in the same domain, but with the Higdon NRBC H1 on gE, using
C1 = 5, which in the middle of the range of the four Cj ’s mentioned above.

• A solution obtained in a domain twice as long, namely the domain 0 ≤ x ≤ 10,
0 ≤ y ≤ 5, using a 42 × 21 grid with the same resolution. During the simulation
time the wave generated on ΓW does not reach the remote (east) boundary of this
large domain, and thus the issue of spurious reflection is avoided altogether, regardless
of the boundary condition used on the remote boundary. Hence this will serve as
a “reference solution” which is exact as far as the boundary-condition treatment is
concerned.

Fig. 3(a) shows the three solutions at time t = 4. In this and the next figures, the top
plot is that of the reference solution, the middle plot corresponds to the solution obtained by
the new scheme with the H4 NRBC, and the lower plot describes the H1 solution. Both the
colors and the contour lines represent values of u. At time t = 4 the main bulk of the wave
packet generated on ΓW has not reached the boundary ΓE yet, and hence all three plots are
similar.

Fig. 3(b) shows the three solutions at time t = 6. The wave packet has already passed
the boundary ΓE. The H4 solution is indistinguishable from the reference solution, whereas
in the H1 solution spurious reflection is evident. Figs. 3(c) and 3(d) correspond to times
t = 8 and t = 10, respectively. The reflected wave moves backwards in the H1 solution and
pollutes the entire computational domain. On the other hand, the H4 solution exhibits the
wave traces which are also present in the reference solution.

Finally we repeat this experiment while increasing the dispersion parameter by a factor
of 20, i.e., we take f = 10. The group velocity decreases with increasing dispersion; hence
the wave packet will move much more slowly now. Also, the solution is expected to be
much “richer,” being composed of many waves with different frequencies and phase speeds.
Indeed, this is seen in Fig. 4(a), which illustrates the solution at time t = 12.5. The wave has
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just reached the boundary ΓE , and the beginning of spurious reflection in the H1 solution is
apparent. Figs. 4(b)–(d) show the solutions at times t = 15, t = 19 and t = 22.5, respectively.
Again the H1 solution exhibits spurious reflection, while the H4 solution performs very well
in this high-dispersion case too.

8. Concluding Remarks

In this paper we have presented a new numerical procedure based on FDs, which allows
the use of the Higdon NRBCs up to an arbitrarily high order. The scheme is coded once
and for all for any order; the order of the scheme is simply an input parameter. This adds
an important computational tool for use in the solution of infinite domain time-dependent
wave problems. Moreover, due to the generality of the Higdon NRBCs it is possible to use
this tool for problems with dispersive and layered media. We have focused on dispersive
waves in this paper, although the scheme is effective in the non-dispersive case as well. We
have demonstrated that the high-order scheme, with the automatically-chosen parameters,
performs very well in both the low and high dispersion regimes.

Related future work will include the adaptation of the proposed approach to more com-
plicated configurations, such as exterior problems with a rectangular artificial boundary B,
and three-dimensional problems. It should be remarked that no difficulties are expected in
the case where B has corners. The Higdon NRBCs do not involve mixed spatial derivatives,
and thus the corner grid-point can arbitrarily be associated with one of the two straight
edges that meet at this corner, and can be treated just as any other grid point on this chosen
edge.

In addition, the high-order Higdon NRBCs will be applied to the Shallow Water Equa-
tions (SWEs). The Shallow Water model serves as an important testbed for more compli-
cated models in meteorology [38]. It would be interesting, among other things, to test the
performance of the high-order Higdon NRBCs when the nonlinear SWEs are used in the
computational domain Ω.

An alternative formulation of the Higdon NRBCs is currently under development. In
this formulation some auxiliary variables are introduced on the artificial boundary, in order
to eliminate all the high-order derivatives. This form of the NRBC has the advantages that
after discretization it involves only degrees of freedom on the boundary B itself, that no
high-order discrete schemes are needed, and that the history of the solution does not have
to be stored. As a result, it is more amenable, compared to the formulation presented in
this paper, for incorporation in a Finite Element scheme. This alternative formulation will
be reported in a future publication.
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Captions for Figures

Fig. 1. Setup for the wave-guide problem: (a) the original problem in a semi-infinite wave
guide; (b) the computational problem in a finite domain Ω.

Fig. 2. Solution of the three-wave test problem: u at the point x = 5, y = 2.75 (on ΓE) as
a function of time. (a) Exact solution and the H1, H2 and H3 solutions with Cj = 1.
(b) Exact solution and the H5 and H7 solutions with Cj = 1. (c) Exact solution and
the H3, H4 and H5 solutions with automatically chosen Cj. (d) Exact solution and the
H3 and H4 solutions with the exact Cj .

Fig. 3. Solution of the west-source problem, dispersion parameter f = 0.5. Top plot —
reference solution, middle plot — H4 solution, lower plot — H1 solution. Times: (a)
t = 4, (b) t = 6, (b) t = 8, (b) t = 10.

Fig. 4. Solution of the west-source problem, dispersion parameter f = 10. Top plot —
reference solution, middle plot — H4 solution, lower plot — H1 solution. Times: (a)
t = 12.5, (b) t = 15, (b) t = 19, (b) t = 22.5.


