iy
>

‘GAUSS FACTORIZATION.
“TABLE OF CONTENTS -

LU theorem -

‘a.

b.

‘C.

Proof of LU theorem: i. e., description of the a.lgonthm
Matlab code using recursive calls (gfr):
Examples no pivoting and complete pwotmg

PSR S’f;u s

“Solvm,g” Ax=b

8.

b.

C.

FEme

The algorithm v

Basic fact GF1: on homogeneous systems S

Key fact GF2: ‘a “short fat” homogeneous system (m > n) always
has nonzero solutions

Basic fact GF3: the number of pivots r(A) is unique

“Duality” of LU factorization—Basic fact GF4

Examples: no pivoting and complete pivoting

Example: connections between (two Ms and ) two Ns

Problems 1 and 2

Nonsingular matrices

oo op

h

(o
.

Definitions of range R(A) and null space N(A) ..
Propositions 1 and 2: cha.ra.ctenzmg nonsmgula.r A
Nine examples of nonsingular matrices
Proposition 3: partial pivoting gives n pivots when A is nonsingular
Proposition 4: properties of nonsingular matrices—definition and
construction of the inverse
Examples
Block Gauss fa,ctonza.tlon-—examples
i. Determinant/eigenvalues of a special arrow matrix A
ii. Sherman-Morrison-Woodbury formula
Some explicit inverses—four examples
Problems 3-6

Equivalent matrices

poop

th o

Definition of matrix equivalence

Changes of variables in Ax=b

Basic fact GF4: Matrix equivalence is an equivalence relation
Proposition 5: every system Ax =b is equivalent with a very
special diagonal system--uniqueness of r(A)

Examples: no pivoting and complete pivoting

Problem 7

Characterizations of ®(A) and N(A), and of R(A') and N(A")

8.

b.
c.

What to do when Ax =b is not solvable or has more than one
solution. The general least squares problem: minimize norm x
subject to norm(b — Ax) = minimum

Getting “handles” on %(A) and N{A)

Proposition 6: the “basis” matrices R, S, M and N, charactenzmg
R(A"), R(A), N(A) and N(A’), respectively

GF 1-8
GF i-3
GF 4-5
GF 5-8

GF 8-22
GF 8-10

- GF 10

GF 10

GF 10-11
GF 11-12
GF 12-21
GF 17-21

GF 21-22

GF 22-43

- GF.22-23

GF 23-24
GF 24-27
GF 27-28

GF 28-29
GF 30-34
GF 34-36
GF 35-36
GF 36

GF 36-43
GF 43

-GF 43-49

GF 43
GF 43-44
GF 44

GF 4447
GF 47-49
GF 49

GF 49-61

GF 49-50

GF 50-52

GF 52-53



o omhe A

Examples: no pivoting and complete pivoting

Problems 8 and 9

Key proposition 7: “change of basis”-uniqugness of pf4)
Examples: ' “change of basis® matrices connecting two Rs, two Ss,

. two Ms and two Ns ) .
." Problems 10 and 11 ’ ' -

6. The Language of Linear Algebra (LAL)

-

=Bl ol

Linear combinations—examples

Subspaces—examples .

Problem 12

Linear transformations . : ‘ .
Proposition 8: connections of the subspaces. R(A) and N(A) with
solving Ax = b : ’

Spanning sets of vectors . ; .

Linearly independent and linearly dependent séts of vectors-

Basis (= span + &)

Proposition 9: every linearly dependent set of vectors in a nongero
subspace U of n-space can be extended to form a basis for U, the
numbers of vectors in any basis for U are the same

Dimension of a subspace ‘

Examples of dimension

Rank and nullity of A

. Proposition 10: rank A = rank A’ and ra;.nk A+nullA=pp

(Sylvester’s law of nullity)

- ' Proposition 11: R(A'A) = R(A’) and R(A) and N(A’) are

orthogonal with each other

7. The Fundamental Theorem of Linear Algebra

a.

meae o

The proof: algorithms for minimizing norm x subject to

norm(b — Ax) = minimum and for computing orthogonal projections
of b onto H(A) (based on Gauss factorization).

The Moore-Penrose pseudoinverse of A

Example

Problem 13: solving one more such problem

Problem 14: finding a basis for %:(A) from among the columns of A
The BIG picture (to be provided)

8. Appendix—a few matlab codes for Gauss factorization

a.
b.

C.

gfpn—no pivoting—demonstration code
gfpc—complete pivoting—-demonstration code
gf—“matlab production code” version of gfpe

Problem set: Gauss factorization

GF 53-56
GF 56-57

. GF 57-59

GF 59-61
GF 61

GF 61-71

.GF 61-62
GF 62-63

GF 63
GF 64

GF 64-65
GF 65

GF 66-67

GF 67-68

.GF 67

GF 67-69
GF 69

GF 69-70
GF 70-71

GF 72-79

GF 72-75
GF 75
GF 75-78
GF 79
GF 79

"GF 80-88
GF 80-83
GF 84-86
GF 87-88

GFP 1-6



SN—

GAUSS FACTORIZATION -

LU Theorem.

‘Let O # A € FRX™, There are permutation matrices P and Q, and an integer 'p.with
1< p < min {m, n}, so that '

Q’AP:LU:_B A

with L € F**? unit lower trapezoidal and U € F# X™ upper trapezoidal with nonzero dla.gona.l
elements. Furthermore, P and Q can be chosen so that all elements of L are at most 1 m absolute

value.
O By induction on (actually, reduction of) min {m, n}.

a. .Since A # O there are interchange (i.e., special permutation) matrices P, and Q; so that

. o
Q;A’Pl - s [¢ 3 # 0 .
A a B
a is the first pivot. Factor
a b 1 a b
a B | [ ¢ 1 G

This requires
a=la, B=0'+G.

Thus.we compute

a
G is called the Gauss iransform of g I 1t is also called, more commonly, the Schur

a b

complement of the pivot a in B
a
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We then have
QiAPl =

with G e FE-D)x(m-1) - ' o -

The compleie pivoting strategy chooses P; and Q; 50 that |o| = max l i Tliis guarantees
. _that all elements of &= E are <1 in absolute value. ' '

. If G O, or if G = @ is the empty matnx, we put
. o

P=P,; o. Ql, p=1,

and stop, with
/! 1 !
QAP: p [ a b ] = LU,

as required. Note that G =@ <> B = . This can happen in three ways:

i m=lé&b =0
QAP = Z [a]:LU,
. n=loa=0=
w1 ][o ¥]-uw.
. m=n=l<a=0b=0x=.
Q'AP:[I][a]:LU.

This shows that the induction assumption holds when min {m,n} =1.

NowO#£Ge Flr—1)x (m~-1) By the induction hypothesis there are permutation matrices P, and
Q,, and an integer o with 1 < o < min {m-1, n—1} = min {m, n} -1, so that
il
QiGP,=MV= | |
with M € F®=1) X7 ypit Jower trapesoidal and V € F7 X (m=1) upper trapezoidal with nonzero

diagonal elements. Moreover, we can choose P, and Q, so all elements of M are <1 in absolute

value.
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d. We then have

1 QAP 1
2 I P,
- - - - -
_ 1 1 a b 1
Q@ || ¢ 1 G P,
- 1 a. blP2
e Qf GP
LQ2 . % JL 2]
’ 1 -] 1 , T . bIP2
g 1 || @ GP,
i Q¢ I i Q5GP
AR 1 e vp,]
' L leﬂ I L MV
_ 1. -\ 1 W o ‘b'Pz
- Qe 1| M| \
1 -1 o b'P,
= =: LU
LQ'ztz M \_ U '

as required, since

1 1
P:=P; e I Q:=Q, Q
2 2

are permutation matrices. We have p = 140 <min{m, n}.
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We shall soon show that
p = p(A),
. the number of pivots, is independent of the pivot sirategy! .-
" Our matlab code gfr impleﬁzeﬁts the above proof. e m;lst'ipclude a tolera.nce,' tol, to
cope with rounding errors. -

function [L; U, p,-q, g = gfr (A, tol)
Gauss factorization with complete Pivoting for size and recursive calls,

Tlustrates the reductive nature of the Gauss factorization process and provides. an
implementation of the most fundamental. proof of the LU theorem.

‘Displays intermédia.i;e output. Press any key to continge,
Copyright (¢) 25 November 1990 by Bill Gragg. Al rights reserved. Revised 20 April 1994,
gfr calls cols and gfr.

begin gfr
[n m] =size(A); r=min (m, n);

Sifr<l
g=1; return
end

Now A is not the empty matrix. Find the pivot.
[2 t] = max(abs(A)); [a 5] = max(a);  t=t(s);

“ifn<?2
s={; t=1;
end

Do special things if this is the first call to gfr.

if nargin < 2

tol = rxa;  format compact, format short, disp(’ ")
end
A, pause

The tolerance tol is computed at the highest level and passed as an argument to the lower
levels. If a is negligible with respect to tol we are done. Then L and U are the empty
matrix.

If tol + a == tol
p=Llm; q=1ln g=a;
else

Now A "= 0. “Do Gauss”. It is not necessary to physically make the interchanges.
It is also more convenient, here, to reorder columns 1, 2, ..., s as 51,2..,8-1
and, likewise, to reorder rows 1, 2, ..., t as t, 1,2, ..., t~1. In extreme cases, when
there are ties for the pivots, this can lead to LU factorizations which are different
from those of gf.

GF-4



i= [1:s—.1 ,s+1:m]; ) j=[1:t—1 t+1:n]
u= A(t_’ i)’ pivot = A(t, s); & = A(j, s)/pivot;
p=ls i q=[t i}

if min (m, n) < 2 A

This is the case when gfr need not be called agﬁn.

L=[1; §; U=|[pivot u'); g=a: i

else

Compute the (nonempty) Gauss transform, again called A, with one less column
and row than the input A. Call gfr again, and in fact recursively, with this A.
Use the results to build the output for the current call to gfr. The unscaled
growth factor g is passed from the lower level calls to gfr to the higher ones.

. It is scaled only at the last step, that is only in the initial call to gfr.

A=AGi)-1a';. [L.Ustg= gir (A, tol); . g = max(g, 2);

r=cols(L); -  z'=zeros(f, 1) -
L=[1 z; &t) L) U = [pivot u(s)’; z U);
p=p([1 s+1]) q=q(1 t+1]):

end .

L, U, pause
eﬂd
Scale g by a if this is the highest lével call to gfr.
if nargin < 2

ifa >0
g=g/a
else
g=1
end
end
and gfr
Ezample
1 0 1
A 1 -3 -2
1 1 o |8 ME%hn=2
1 -2 -1
B _

a. No pivoting. We now view the array containing A as a “tableau,” or “workspace,” and not

as a matrix. Pivots are circled.
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1] 0 1 1 0 1
1 |-3 -2 1
—
1| 1 2 1
1 1-2 4 1

 We , ‘

® ' copy the pivot and what’s to its right (b');

) di.vide.wha.t’s l:;elow the pivot by the pi\.'ot, thus forming ¢ = %,'

.- repl;ce B by B~ &/, circling the next pivot. ' |

+ We then repeat the process, as long as 5’@ can find a pivot, B}fdgfinjt?on, pivols are not zero.

1
1
1
1

1 -1/3[ 0
1 2/3] 0

Here, there are no more pivots. The nontrivial part of L, excluding the “automatic” 1s and 0s,

is beneath the “staircase.” The nontrivial part of U is on the “staircase” and above. Result:

p=2and
1
1 1 1 ] 1
A=LU=
1 -1/3 -3 -3
1 2/3

All such results should be checked. That’s easy here.

Complete pivoting. We now use an eztended tableau which now also containsi the column and row
indices, which will ultimately be the permutations p and . This leaves one extra space which we
use as a “stage counter” and which will ultimately contain p. We view the interchange steps as
%—stages. We interchange to put the pivot in the pivot position. We choose the pivot to be the
first element of largest absolute value in the columnwise ordering (A(:) in matlab). Note that
rounding errors can cause mathematical ties to be resolved differently than with pen(cil) and

paper computations.

If the matrix is square (n X n) and there are n pivots, there is still an nth stage, even though
there is nothing to the right of, or below, the pivot. This last stage consists merely of recognizing
GF-6



that there is a pivot , and incrementing the stage counte:.

Here are the computations for the given A:

011 2 3 1212 1- 3
1|1 0 1 R ETER)
21 -3 =2 = -1[6fj1 1 =
3|1 .1 2 3|11 o
411 -2 -1 4-251_1
1
2:A
La 1
3
4
2 2 1 3
2 [-3 1 -2
3 [-1/3]4/3 4/3 P=2 p=[213, q=[2314,
1 o:3/4l‘o S | |
4 lo/3 174] o

Results. p, p and q are given just above, and we have

1 .
-1/3 1 -3 1 -z
QAP=LU=
0 3/4 4/3 4/3
2/3 1/4
L i
Check:
-3 1 -2
1 1 2
LU = )
0 1 1
-2 1 -1
B i
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1

QAP= Q' | | [e e
1 1 2 1
1

-2 -1.

e ][ 0 v 1] [ s
(A -3 1 -2 ] 1
e 1 1 27| o
e -2 1 -1 -2

.The codes which implement ‘this nonrecursive form of the algonthm are gfpc,

1 -2
1 2
= LU.
1 1
1 -1
a.‘demon'stration '

code, and gf, our “production” code You can check all your results with gfpe, if m < 7 and there are
no ties for the pivots. Also, gfpn does no pivoting and gfps chooses small pivots, just to show the

“numerical instability” of this scheme.
“Solving” Ax = b.
We have the following equivalences:
Ax=b & Q'Ax: Qb
& QAP.Px=Qh
< LU-P(x)=Qb

& Le=Qb, U-Px=q

Partition
p L
LU = ! [ U, U, ] ,
n—p L2
p p m—p
and
b P
b@):=Qb=:| ! ,
b, | n—p
Fx 7 0
x(p) :=P'x=:| !

GF-8
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Thus we have

le = b (=1 Llc = bl’ ch = bzs lel + U2x2 =C J .

' L1 (4 18 unit lower tna.ngular. U1 —Q Is upper tmngular thh nonzero diagonal eIements
(the plvots)

 Either of the matrices L, or Uy, or both, and the correspondxng vectors b, or x,, or both, may be
empty (0). We have

p=m <& U2=0, x, =0, Plxle’
and . '
p=n: & L2= 0, :' 3b2= 0, : le = bl oo .

We can now “solve” Ax = b completely by using only triangular s.olves involving L, and U,, and

matrix-vector multiplications involving L, and U,, if the}; are not empty.

Since L, has nonzero diagonal elements we can forward solve the system L,c = b,, uniquely, for c.

The lmear system Ax = b is then solvable if and only if this c satisfies the aoluabzhty condition
:
If p=n this condition does not arise. Thus, if p =n then Ax = b is solvable, for every b € R®. If
p <n and the solvability condition is not satisfied then we stop: Ax =b has no solution.
We must now solve

lel + U2x2 =C.
If p = m this is just

U1x1 =cC

which we backsolve, uniquely, for x; and then put x = Px;. Thus, if p = m the solution of Ax = b,

if one exists, is unique.

If p < m then we may assign arbiirary values to the elements of X, € R™™P, These elements are
usually called “free variables.” There are m—p of them. If p = m there are none of them! Once the

free variables are assigned we backsolve
Uyxy = c=Usxy

uniquely for x,. Then we “unshuffle” to get
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x=P
X,

If the free variables are retained as variables then this x is the general solution of Ax b. The free

varzables ‘may be dzﬁerent if dszerent pwot strategtcs are used

If the free variables are given specific values, then we obtain a particular solution of Ax =-b. Th;a

simplest particular solution is obtained by taking x, = 0—,- This is the particular solution which is
computed by our code: g'fsp. We b-solve 'le =c for x; and then put x = P- X1 ] ’In-ma;ﬂab one

does this by writing x(p) = [x1; 0]. If Ax= b is not solvable we output x: =[ J; matlab’s empty

vector (matrix). The solvability question’ ch =b,is normally obscured by roundlng errors. We use

. a “reasonable” criterion for replacing “tiny” by—Ljc by o _ o if p &,

We shall give examples soon. But first, while the general discussion is at hand, we need té

establish some basic facts.
First of all, the homogencous system
Ax=0,

is always solvable, by x = 0_,. This is the unique solutlon of Ax =0, if and only if p = m (no free

variables). Otherwise there are free variables and we can choose any, or all, of them to be nongero."

Basic fact GF1. The homogeneous system Ax =0, has a nonzero solution if and only if (there is a

pivot strategy with) p < m.

The strongest consequence of this which is independent of p is
Key fact GF2. Let A € F*X™. If m > n then the homogencous system Ax = 0, has a nonzero
solution.

O Always p <min{m, n}. If m>n then p<min{m, n} =n<m. Now apply fact GF1. -

It is conceivable that, for a given matrix A, different pivol strategies could give rise to different
numbers of pivots, p. For instance, for A € F®*™ there could he (n!)? different ways to choose the

pivots.

Basic fact GFS. p = p(A) depends only on A, and not on the pivot strategy used to factor A.

O  Consider the homogeneous system Ax = 0,,. With one pivot strategy this is equivalent with
UP'x=0, UeRrX™

and, with another, with
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VP'x=0, VeFxXm,

The matrices U and V are upper trapezoidal with nonzero diagonal elements. We wish to prove that

p=e

If not. we ma.y assume that p > 0. ‘Now the two systems UP'x 0 and VP'x 0 ha.ve the same.

solution sets, namely the solution set $ of Ax =0,

Suppose first that p=m. Then the U-system has the unique solution x = 0, so $ = {0,}. On
the other hand the V-system is a homogeneous linear system of ¢ < p = m equations in m unknowns.
By key. fact GF2 it has a nonzero solution so ¥ # {0,,}. This contradiction proves our result when

p=m.
Now suppose p <m.’ Then the U-system is

X
. Upx +Ugx,=0, x=P .
ey X,

with x, € R™~°. Append to this system the m—p equations
X2 = Om_ 0"

The solution set of this appended U-system is ¥ = {0}, and it is the same set as the solution set of
the appended V-system: ' :

vPx=0, x=0

But this is a homogeneous system of c+m—p =m — (p — ) < m equations in m unknowns, so

¥ # {0,,} by key fact GF2. This contradiction proves our result also when p < m.
The parenthetical expression in basic fact'GFl,may now he deleted. .
The LU factonzatlon is a “dual factorization. That is if

QAP=LU= ‘ A
then, by the reverse order rule for transposition, also

IAIQ UILI D _j

The placement of the 1s on the diagonal of L is not important. We could as well have made the

_diagonal elements of U 1s. (How may this be done, after the fact?) What is important is that the

diagonal elements of L and U are not zero. The above shows that if A has such a factorization then
so does A’, and vice versa. In other words, with “Gauss, whatever we do for A we can also do

A/, “dually.” In particular we have
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Basic fact GF4. p(A') = p(A).

We now recall our setup and give some examples. With the partitionings

L P L1 ’ - i
Q’AP?LU: : [U; 12,]. p.

n—p | L,
P p m—p
and
- -
Q = 1 P
2 | 0P
[ x
P'x = 1 P
we execute
Algorithm “solve™.
1. f-solve L;c = b, for c.
2. Check solvability:
Ly L b, .

If not solvable, stop.
3. If p = m the unigue solution is
x=Px;: Ux;=c.

If p < m the general solution is
x=P : U1x1=¢:_[]2x2
with x, € F™~7 arbitrary.

Ezamples. On pages 5-8 we factored
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1 0 1

1 -3 -2
A=

1 1 2

1 ‘-2.-1

in two ways, with no pivoting and with complete pivoting. We now consider two different right sides

4 v
B l.
-11 :
b=Ax, = 9: X =] 2
3
-6
-and "
1
2
b =
3
4
L

We execute algorithm “solve” for the two different LU factorizations and these two bs. We find

the general solution to Ax =b.

1. No pivoling. p =2,

1
1 1 1 0 1 L
A=LU= . 1 [ ]
1 -1/3 -3| -3 L, Up U
1 2/3
4
=11 b
a. b=|—{= 1
9 b,
-6
1 ¥ 4
Lic=b;: = , € = 4
1 1 79 -11 -15
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Ly ; b, :

lw
Y
[e]
H
|
|
o
Y

X
x=]6& |= 1
$s &
lel =Cc— U2X2:
1 0] ¢g 4 1
| =15 +3¢3

b-solve for &, £y, as functions of the free variable &5

_3£2=—15+3E3, £2=5"E3: £1=4-1£3'.

Thus the general solution is

& a-15 | 4| [
x =1 6§ |=|5-1G =5 [+]|-1]¢

=Xp+Mz (2 =€ €R arbitrary)

The particular solution given by gfsp is x, (§3 =0). This is not the solution Xy We
built b from! But there is a unique value of §; for which x = Xg, namely. {3 = 3.

Geometrically, the general solution is a line in R3 passing through x, and xg. Otherwise
stated, the general solution is all scalar multiples of the nonzero vector M ( a line through

03) translated to pass through X5, OF X Any nonzero scalar multiple of M would serve as

well to determine this line, since the free variable &4 varies over all of R.
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Check:

10 1| 4]
: 1. -3 =2 —11
Ax[.,_ 1 1 2 - 9 =5,
1 -2 -1 0
L o | 5]
i o0 1] i
REER
1 -3 =2
1 1 2 . 0 4
1 =2 =1
i 1 | 0]
Thus
Ax = A(x, + Mz)
=Ax.p+AMz
=b+0z .

=b.

The set {Maz: z=¢€ER} is a line through 05. It consists of all sollu{ioﬁs of the homogeneous
system Ax =0,

1
2 b
b=|"7""| = 1
3 b,
L 4
1 1
Llc = bl H 71 — s C = 1
1 1 72 2 1
1 -1/3 1 2
L2c '—Z— b2 H ch = / = /3 # b .
1 -2/3 1 1/3 2

Not solvable. Siop!
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" Complete pivoting. Also p = 2,

1
~1/3 1 || -3 1| -2
Qap=1y= | =1 ~ =] [Ui Uz],
Lo T 0 34 43l 431 L, (LY
: d
2/3 1/4 o "
"withp=[2_1 3]andq=[2 3_1'4].
4 ~11
a i b= 1, blgdd=Qb = 2 = blm
9 ' 4| - | by
—6 —6

Lic=b, : ' ny_TH I
R S || e " T e

L. lb . L = 0 3/4 :-11 -r 4
=t = oss /4 | |1e/3] = |.'6 = by

Solvable. Proceed.

. 52 x
x(p)=Px =| § ='li 1]

3 1 ||e _ (11 -2
43 | & | [16/3] |4/3 &

T 16/3-4/3 & |

b-solve for £,, £, as functions of the free variable &3

ol
(XN

a=¥-%e, g=1-1¢
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—362 + El =-11 +263 s

= —4=§-1142¢,,

= -15434,, :
The general solution is ' -
£1 K 4"'63 4 -1
x=| & [=|5-&[=]5 |+]|-1]¢
=x,+ Mz,

as before. This was an accident! Usually, the particular solutions Xp, the “basis matrices”

M, and even the vector z : = x; of free variables will be different for different pivot strategies.
We illustrate this by solving the “dual” homogeneous problem
AY=0u .. .
.for its genera;l solution using the “d.ua-ll”‘ Ll} 'f.a;toriz.a.lions
PA'Q =UL'= gé [ L] L ]
2
of the abc;ve two factorizations. When working with A’ we make the exchanges
A—oA', men
P—~Q, Le«U.
Of course p is left unchanged since
p(A) = p(A") .
Since ¢ = 0 we have only to solve
L1y, =0-Loy,
in each case, where w : =y, is the vector of free variables and

41 0

y(@=Qy= .
yo | n—0



No pivoting.

I
)1
' N2 y
v@=Qy=| 2 |=|"
: 73 Y2 .
T4
‘Liyy = -Lyy:
1 1 | _ 1 1 N3 .
1 7y -1/3 2/3 | |'n, :
_ “713"74'
=], )
3’13‘%’74

b-solve for N1, 7, 88 functions of the free variables r)3 and n,:

1 2
’72,=-'§ 3 -3 N4>
Mmtn=-n3—-17,,

m= =Ny —MN3— 1Ny »'.' '

1 2
=3 tgNT N3y

4

Thus the éeneral solution of A’ y=0is

4 1
—gN3—774
™ 3 3

1 2
2 37373
N3 1nz + O,

T4
L On; + 1n,

- -

-4/3 -1/3
1/3 -2/3 N3
1 0 N

0 1
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Check. We have

—4/3 -1/3
1 11 1 //3 2/ ,

. . . . 1 -2/3 .
- AN = 0 -3 1 =2 ) / =
1 =2 1 -1 .

o 1
L . =

"s0, of course,

Aly=A'Nw=0Ow=0.

Complete pivoting.

’721
: M3 . y
y@=Qy=|_|={"
L/ Y2
| ™
Liyy = Loy
1 -1 [m | [Loo2s]]m]
1 13 1 3/4 1/4 1| n,
- o
2 7
Ony—3m,
=l s 1.
—gMm 1™

b-solve for 7,, 73 as functions of the free variables 7; and 7,:
—_3 1
ﬂz——th"’th )
2 —%ns =0n —%m .

2
M= %’73"’5’74

_ 1 1 2
— __nl ._1_1’4__17
— 1
==4Mm—zM
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Thus the general solution of A’y =0 is also

r -
] 1n; +0n,
M .
' 1. _3:
y = | 4 =g )
s ‘%’71‘%’74.
n .
1 0
 -1/4 -3/4 || 9, _
~3/4 -1/4 || n, v
0 1
L .
Check. We have
1 11 1 Y
0 0
" ~1/4 -3/4
. AAN=| 0 =31 =2 . = o0 .o =0
; . 0 1 0 0

s0, of course, | ‘
Aly = A'R% = 0" =0.

Here, neither the free variables nor the “basis matrices,” N and ﬁ, are the same for the two pivot

strategies. But the mairices N and N can be related. Note that

-1/4 -3/4
- -3/4 -1/4
QN = /e -1
10
0 1

%* . .
has the same “trapezoidal” structure, »as N. We can find matrices B and C so that
2
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NB=N and NC=N. (%)

This is done by comparing the last two rows of NB = N and the first and last rows of NC=N
or, equivalently, the last two rows of Q'ﬁC = Q'N. These rows involve the “identity parts” of N,
N and Q'ﬁ , respectively. We find ' :

-

-3/4 —‘1/4 c—. -4/3 —1/3

0 1 | -0 1
The full relations (%) are easily checked, as is the fact that
" BC= ,=CB.

) Such relations, connecting “basis matrices” obtained via different pivot strategies will‘be seen to .

hold in gcﬁeral.

Problem 1. Do hand computations analogous with those on i)ages 12-21 for the Amatrix

— . —

1 1 -1
1 2 1
A={ : o
1 73 3
1 4 5
L =
_ and the two right sides
1
_ 4
a. b=Axy= y Xg:=] 1
1
10
1
-1
b b=
1
-1

You will get two different matrices M and M, say. Relate these matrices as we related N and

N above (M and M are one column matrices!).
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Problem 2. Let

i.

1 1 1
, 1 -1 2
A=
1 1 3 .
1 -1 4
L ’ -

Compute p(A).

Does the homogeneous system Ax =0 have the unique solution x = 0?

If Ax bi is solvable, is its solutxon umque"

Is Ax b always solvable (for arbztrary beRY)? - k.
Does the homogeneous system A’y = 0 have the unique solution y = 07

If A’y =d is solvable, is its solutiqn unique?

Is A’y = d always solvable (for arbitrary d € R3)?

Find the general solutions of Ax = b for @) b= 1 -11 -1, G)b=[100 i]',
(m) b= [4 3 2 1]'

Find the genera.l solutxon of A'y d= [1 0 1]'

Nonsingular matrices.

We always have A € F**™. We know that p = p(A) depends only on A.

The matrix A represents a function (or trz:msformétion,.or mapping) from F™ to F®. This

function is given by

A:Fm L Fn

x—y:=Ax,

that is by matriz-vector multiplication.

Definitions.

R(A) : = range of A
:={Ax: xeF™}
i = AF™,
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N(a) : = null space of A
i={xefF™: Ax=0)}.

By definition, F(A) is the set of all vectors b € F* for which Ax =b is solvable: N(A) is the
-set, of all solutions of the hoinbgeneous system Ax =0,. ' .
Proposition 1.
L - R(A)=F" & p(A)=n,

2. N(A)={0,,} © p(A) =m.

1. P(A) = F™ means that Ax = b is solvable for everyb € F*. If fhere is alsolvabﬂi.ty condition

Lgc =b,, that is if p(A) <n, we can always choose b, so it is not satisfied.

2. N(A) = {0} means that thélje are no free variables, that is, p(A) = m. -

Definitions. The matrix A € FRXm g nonsingulai' if, for every b € F?, the linear system Ax=Db

" has a unique solution x € F*. A is singularif it is not nonsingular.’

Thus, A is singular if there is a vector b € F™ so that Ax = b is either not solvable, or it has more

.than one solution.

~ The solvgbility of Ax = b, for every b € F™ means that p(A) =n. The uniqueness of solutions

means that there are no free variables: p(A) =m. Thus we have
_Proposition 2.

Only square matrices (m =n) can be nonsingular. For A € FrX%n the following statements are

equivalent:

1. A is nonsingular,
2. p(A)=n,

3. N(A)={0,),
4. N@A)={0},

5. R(A)=F",

6.- B(A)=F",

[7- 'det Al=|v11 U22 sen vnn|>0-]
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Remarks.

Property 2 is the main practical test for nonsingularity (so far!). Property 3 is the main theoretical
test for nonsingularity. To show that A € R"X® js nonsmgula; one typically shows that Ax =0
= x=0. We give examples of this below 'On_the other hand, A € Rnxn is singular if there is an |
x # 0 with Ax = 0. Properties 3 and 4 are equivalent since p(.-\) o( A’) We downplay property 7,
A nonsmgula.r <> det A ;é 0, since det A is e::trcmely sensitize to small changes in A, even for
moderate n. We shall later discuss'more “robust” measures (cond A) of the “near singularity” of A.
It is useful to note that det A is (—1)" times the product of the pivots, where v is 'th‘e total number
-~ of interchanges (of columns and/or of rows) made in the factorization process.

Ezamples.

1. Permutation matrices P are nonsingular. Since P’P =1 then Px=b=>x = P’b (uniqueness of

solutions). Then, since PP’ =1, x = P'b = Px = b’ (existence of solutions).

2. Lower or upper triangula.r matrices are nonsingular if and only if all their diagonal elements are
. not zero. Then, e.g., Lx = b can be f-solved uniquely for x. If some diagonal element is zero,

we run into an equation 0 §; = 7 I % % 0, this has no solut:on. If 9; = 0, it has infinitely

many solutions.

) Wy = mxwilkinson(5)

1 1 [ 1 | T 1
-1 1 1 -1 1 1 2
= =1 -1 1 1 =1 -1 7—1 1 1 4
-1 -1 -1 1 1 -1 -1 -1 1 8
-1 -1 -1 -1 1 -1 -1 -1 -1 1 16
is nonsingular [with det W5 = 25~1; in general det W, =214,
4. Ty = mxtsd(5)
2 -1 1 hi 2 -1
-1 2 -1 -1/2 1 3/2 -1
= -1 2 -1 = ~2/3 1 4/3 -1
-1 2 -1 =3/4 1 5/4 -1
-1 2 -1/5 1 6/5
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1
-1/2 1

-2/3

b

=LDL/

. Pg = mxpsd(5)

1
~2/3

~1/2

| -1/2-1/3

[ 1

-1/2 1
-2/3

=

=LDL/

-1/2-1/3-1/4 -1

is singular [with det P, =0, n > 3}.

GF-25

2 1 -1/2 i
3/2 1 -2/3
1 4/3 1 -3/4
. —3/4 1 " 5/4 1 —4/5
~4/5 1 6/5 || - 1
| JL JL .
is nonsingular [w-ith‘ det Ty = 6; in general det T, =n +1).
. -1 1 [ 2. -1
-1 -1/2 1 ' 32 -1 -1/2°
2 -1 = S -2/3 1 4/3 -1-1/3
-1 2 =1 ~3/4 1 5/4 -5/4
-1 2 -1/2-1/3-1/4 -1 1 | 0
17 2 17 1 -1/2 -1/2 i
32 1 =2/3 13 |
1 ' 4/3 1 -3/4-1/4
~3/4 1 5/4 1 -1
-1/4 - |1 0 1
/ -4 L J L B
T - .. - -
2 17 —-1/2 -1/2
) 3/2 1 -2/3 -1/3
4/3 1 —3/4-1/4
-3/4 1 / /41
i 5/4 {_ 1 -1



6. Mg = mxmin(5)

1l
o~ T S S = S
DN N N N e

b

=LL’

is nonsingular [with det M, = 1]..

7. Mg= mxma.x(5)

—

il
R o o R
GO W N N
13 I R R

1
2 1
=| 3 32 1
4 4/2 4/3
5

=LDL’

is nonsingular [with det M_ = (~1)*"1p].

8. M; = mxmix(5)

r—

il
e
— N N N
Lo - B L R T

QL O L N

L N

[ N

1

5/2 5/3 5/4

- NN N =

_ 3 I O

[ S S S O VS vy

R A T R L ]

[ T S Sy VOV S PN
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1 -
1 1
1. 1 1
11 1 1
1
2 1
3 3/2 1
4 4/2 43
5 5/2 5/3 5/4 1
-
-2 .
~3/2
—4/3
~5/4
1 0
11 0
1 1 110 o
11 0
1 0

et

[ =)
)--r-lr-t_r—'
r—-»-n-.n—-r—n

2 3 4 5
-2 -3 —4 5
_3/2-4/2-5/2
~4/3-5/3
/4

3 4 5
3/2 4/2 5/2
1 4/3 5/3
1 5/4

1

o ol = -




It
[ - T SR
—
: —
=
ot
foery
Il
[
[y
~

is singular [with det M, =0, n > 1].

_9. - The special arrow mairiz

I e : .
= ¢ 1| e :=ones(n—1, 1)
has the LU factorization
I I e ‘
An = ! k] - m : = n - 2
e 1 -m
L JL i

I I I e

e 1 -m 1

= LDL'.
Thus A, is nonsingular if and only if n # 2 [det A, =2 ~n].

For general m#tri‘c& we must use a complete pi.voting‘ strategy (;t least for “nonzeronesé,”
if not for “size”). This is moderately expensive. Partial pivoting is substantially cheaper.
Proposition 3.
For nonsingular matrices A, partial pivoting suffices (to give p(A) = n pivots).
o
1. 'There’s a pivot in the first column. Otherwise, Ae; =0,¢,:=[1 0 0 ... Oj', and A would be

singular (proposition 2.2).

2. If Q is a permutation matrix then Q’A is nonsingular. For if Q'Ax = 0 then Ax = QQ'Ax =0 s0

x = 0 since A is nonsingular. Again we used proposition 2.2, twice.

3. We now factor

QA= (a#0).
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a b
The key step is to show that B nonsingular (and o # 0) = G nonsingular.
a

Suppose Gx = 0 to show that x = 0. '.

Define ¢ by E
al+b'x=0,
‘that is
gim b
=3
Then-
a b
=0
G x
- 1. .
and multiplication by p : I gives '
a b £
=0.
a B x
[ R ——
Q'A
a , - - £ - .
Since QA is nonsingular, then =0; in particular, x = 0. Thus G is nonsingular.
X

4. Reduction!
n

Definition. GL(n) is the set of nonsingular n x n matrices. (This stands for general linear “group.”

What follow are the “group properties™ of the nonsingular nx n matrices.)
Proposition 4.

Let A, B€F™*™, Then:

1. A, BeGL(n) = ABe€GL(n).

2. ABeGL(n) = A, BeGL(n).
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A €GL(n) = there’s a unique B € GL(n) with AB=1__

AB = L, = BA =1, (one side is enough).

Definition. If .

- AB=I,=BA - - -

we say that A and B are inverses of each other aﬂnd write
Al:i=B, Bl:=4.

A,BeGL(n) = (AB)'=B"1A71,

A€GL@) ¢ A'€GL(n), and (A)1 = (A1 =: A~

This might ,be called the factorization pﬁ'nciplc. We must show that, for every given b € F?;
. the linear system ABx=b has a unique solutioﬁ xeF®, Well, let ¢ : = Bx. Then

ABx=b ¢ Ac=band Bx=c. If b € F" is given then c is uniquely determined, since

A € GL(n). Then x is uniquely determined since B € GL(n).

This is the converse of 1. It is a little deeper. Let AB € GL(n). Let Bx = 0 to show tha.t: x=0.

Then also ABx =0, so x =0 since AB € QL(n); Thus B € GL(n). That was easy, but what

about A? Well, we know know that A € GL(n) ¢ A’ € GL(n) (proposition 2.4). So
ABe GL(n) <> (AB)’=B'A’ € GL(n) (reverse order rule for transposition). Thus, as above,

A’ € GL(n), that is, A € GL(n). ' ' ’

AB=I, < Ab;=¢;, 1<i<n, where the b; and-¢; are the columns of B and I, respectively.
Since A € GL(n) all these equations have unique solutions. There’s more! Since, clearly,

AB =1, € GL(n) then 2 shows that B € GL(n), as required.

Suppose AB=1I,. Again B € GL(n) by 2. By 3 there’s a C € GL(n) with BC = I,. We then

have
BA =BAI, =BABC=B[,C=BC=1_,
as required.

Let A, B € GL(n). Then AB € GL(n) by 1. By 3 and 4 (AB)™? exists and is unique. But clearly
(AB)(B~'A™1) = ABB~!A~1 =1, s0 (AB)~} = B~'A~! by the uniqueness.

We already know the stated equivalence (propositions 2.3, 2.4). We have A~?A =1 . By the
reverse order rule for transposition, A'(A™1)’ =I. Thus (A")~1 = (A1) by the

uniqueness.
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Ezample.

Let M = mxmax(5)

N . —

1 2 3- 4 5
2 2 3 4 5 -
= 3- 3 .3 4 5
4 4 4 4 5
5 5 b 5 5
M = M/ is real symmetric.

In general

J :=Jn:=[enen_1... e ]

ey

l
OT' o O O o
c — o o o

o e e e

is the counter identity and, for A € CRX®,
flip A : = JAT]

is the “counterpose,” or simply the “flip,” of A. flip A is the reflection of A in its counter diagonal -

( ). Ais counter symmetric if A = flip A.

Since M = M’ s real,

flip M = IMJ
(5 5 5 5 5

5 4 4 4 4

=| 5 4 3 3 3

5 4 3 2 2

5 4 3 2 1
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[ 1Ms 5 5 5 5]
11 1 -1 -1
= 1 1 1 -1 -1 -1
1o1- 1 1 -1 .=
1 1 1 1 1, -1 .
L - - -
1 5 1M1 11 1 1
11 -1 1 1 1 1
=l 1 1 1 -1 1 1 1
1.1 11 -1 11
1 1 1 1 1| -1'L 1
=:LDL'.

Now J = J/ is a permutation matrix so J? =1, that is J=! .= J. Thus
M =JLDLJ,
being a product of (five) nonsingular ﬁxatrices, is also nonsingular (proposition 4.1). Now .also
| M= (3L) D (ILY. o
The matrix Ji, 1s L “turned upside down;;’ and ;'t is symmetn‘c;
Thus

M = (JL)D(JL)

— - r ar
1 1 1 1 1 5 1 1 1 1 1
1 1 1 1 -1 1 1 1 1
= 1 1 1 -1 1 1 1
1 1 -1 1 1
1 -1 1
B JL . l_

Let us compute
M~ =JL'D7IL- .

For this we need L™1.
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In general,

E:=En:=[e2 e; ... e, O]

0

1(

= 0
' 0
0

(== R =

0
0
0
1
0

o = T~ B o Y —

0

0 .
0 (n=35)
0

0

_ | J
is the downshift matriz (of order n). We have '
: Ex:E[ & & - 5“]{

'—,‘[ 0 &4 & ---fn-l]-
We have (n = 5)

- . - . - . _

0 0 0 0 0 0 0 o0 o0 o
‘ 00 0 0. 0 0 0 0 0 o0 o

"E’=| 1 0 0 0 o0 |, E=| 0 o 0 0. 0
0 1 0 0 0 1 0 0o o0 o
0 0 1 0 o 0 1 o0 o0 o

[0 0 0o o o ]
0 0 0 0 o
E'=| 0 0 o0 o0 o0 |, E’=0

0 0 0 0 o
1 06 0 0 0

Thus, for general n, the geometric series
I+E+E?+...=1+E+E>+.. 4+ E"-!
“converges” and equals L. Let
:=I-E.
Then
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BL=(I-E)I+E+E%+. ,

=1+E+E2+E3+...
-E-E2-E- .
- =I=LB
and so
. -
-1 1
L"'1=B'=. -1 1 ’ '(n=5).
-1 1
-1 1
AWenowhave
IM13=B'D"'B’
1 -1 : 15 ~ 1 1
1 -1 ' -1 -1 1
= 1 -1 -1 -1 1
1 -1 -1 -1 1
1 -1 -1
- - L JL
1 -1 1/5 ]
1 -1 1 -1
= 1 -1 1 -1
1 -1 1 -1
1 1 -
B JL ! i
—-4/5 1 4/5 -1 ]
1 -2 1 -1 2 -1
= 1 -2 1 =- -1 2
1 -2 1 -1 2 -1
1 -1 L -1 1

Thus M~! is the “flip” of this real symmetric matrix:
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1 4 ]
-1 2 -1
Ml=— -1 2 - (n=5)
-1 2 -1
-1 4/5. .
F 1 -1
-1 2 <
== . -1 2 7 y  in general,
2 1 e
T-11-4 |
1 -1
-1 2 -1
=- -1 2 + %ene;l .
2 -1 -
-1 1
! J
Sonic uses of inverses.
Block Gauss factorization.
-
A= A A A, nonsingul
= . » . A ngular
' Ay Ay o
-
_ I Ay A,
AnAn 1 G

with
G=Ayn-AnAf Ay
the block Gauss transform or, more precisely, the Schur complement of the pivot block A,y in A,
[If A is also square then
det A =det Ay det(Agy— Ay AT]A, )

(Sylvester’s determinant identity).
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In particular,

dfat | : 1;3’ =.ad.et( —%bf.)

gives a better way to cdmpiite determinants than by the Laplace expa.'nsioﬁ, the method thatis

usually taught. In fact this is just Gauss factorization!

Ezamples.

1. For A= the nxn arrow mairiz we have
det A =det I(1—e'e)
= 1-—('n'—i) =2-no
9. In general, X € C is an eigenvalue of A € C*X® if A~ A is singular. Thus the eigenvalues of A
‘are the zeros of the characteristic polynomial p(A) : = p4(}) : = det (A — A). For our arrow
matriz A, Sylvester’s determinant identity. gives '

A-1 -—e

“ p(A) =det
p(%) - A-1

=det [(A-1) I](’\ - 1- ,\cfl)

=(A-'1);‘-1(A;i—';:§)

= -1 2= 1%~ (n -1

= -12(02-2A-m), m:=n-2
Thus A has n —2 eigenvalues A, =1 (1 <k < n). The other two eigenvalues solve
M2 -m=0
and are thus
A= \/;17_1-+ 1
~4/Mm, n-— 4o,

and
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/\n:z——“n-Q
vn—-1+1
~—\/I_1, n—>+oo.]'

Sherman-Morrison- Waodbjury fo_ﬁnula: ifs énd T are nonsingular and [S + T = U’V ‘then ‘

o= vsTw)a o v = 1.

(1= vs~ly’)(1- vr-ty)
- =I-VSTW - VT s vs-tgty iy
=I- VS_I(S +T- U'V)T_it]' =1I.

Sherman-Morrison formula (S=o0 = —1). If 1+ v'v # 0, then

!

I I--'1= __vu
(I+w') I T+ %

If v'v=—1 then I+ vd' is ;ingular, since v 0 ;md
(I+ v )v= v+ va'y
| = v+ v(-1)
-0

[By Sylvester’s identity, and some interchanges which leave the determinant unchanged,

-

I v /

1—d'v=det , = det ! v

u 1 Vv I
=det(T—vd).

That is (v & —v).

|det (I+ vu') = 1447 . ]

Some ezplicit inverses.

1. Special arrow mairiz

v t e=ones(n—1, 1)
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= ¢ _mJ L m:=n—2#¢0.
General fact:
I . 1 1 I U T I -U
L 1| |- 1| I J T 1|
~as can easiiy be checked by block frmltiplication.
By this and the reverse order rule for matrix inversion,
e =‘ I —e. | |
- 1 o —-1/ m —e' ‘ 1
1' [ I —e ml I
|y 1 -1 el 1
1 I —e r ml
Tm 1 el -1
] mI—ee’ e
- Y IO
- . h
2 -1 -1 -1 1
-1 2 -1 -1 1
=4 -1 -1 2 1|1 (n=5).
-1 -1 -1 2 1
1 1 1 1 i-1
Our matlab functions for A and the matrix mA ™!, whose elements are integers, are mxarrow
and mxworra, respectively.
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2. The “min mairiz”

M = mxmin(n)

We have already seen (page 33) that L™ = B=I—E. Thys

Il
e

Il
P T
b gl

BN NN =

11
2 2
3. 3
3 4
3 4
1

11
11

[
M 1=BB=
[ 2 -1
-1 2
= 1

where

Cr R WO e

=T —eyel, in general,

(0 =35)

-1
1 -1
1 -1
1 -1
1
-1
2 -1
-1 2 -1
-1 1
T : = mxtsd(n)

is the negative second difference matriz.
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1
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8. The negaiive second difference matriz

T : = mxtsd(n)
— ) 1 -
-1 2 -1
= -1 2 -l (n=5). .
-1 2 -1 |
=1 2

Continuing #2 we have
T=BB+ ene,'1
=B/(1+ B‘;ené;B‘l)B
=B/ (I+L'ye/L)B
=B/(I+ee')B
with
e : =ones(n, 1) .
By the Sherman-Morrison formula, |

T ' =B"! (I+ee')" 1B

_ __ee! \:14
—If(l 1+e'e)L

Le(Le)’
— 11/ _
=LL n+1
M uu’
=M n+1
with
1 1 T
1 1 1
w:=Lle= 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1

=[1 2 3 .. n]/, in general.
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Thus, for n = 5,

-
. Tl=
That is
T
6Tt =

S o o o o e e

N G b o

BN NN

12
12
12
12

[S- B I » BN

W W W N

12
18
18
18

W O O o e

L N

12
18
24
24

B 00 O W N

(L -V )

12
18

24

30

(= A

.

The general patiern is easy to see. “We have

with

and

[
[= -1

(S B LA S

G:=[7ji]:=(n+1)T

i
e

il
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—/ﬂ —"7
B, . n—1

ESENEY

A matrix G =[ %i ]whose elements are of the form (%), with arbitrary vectors a, b € R", is said -

. to be a Green’s matriz. Thus, Green’s matrices are symmetric and they depend on at most 2n

real numbers. Our special Green’s matrix is also counter symmetric.
Wilkinson’s “pivoting matriz,”

W = mxwilkinson(n)

1 1 i
-1 1 1

= -1 -1 1 1 (n=25)
-1 -1 -1 1 1
-1 -1 -1 -1 1
1 1 1 1 1 , 1]
-1 1 1 1 2

= -1 -1 1 1 1 4
-1 -1 -1 1 1 1 8
-1 -1 -1 -1 1 1

. JL 1L b
=: LDU.

We know that U is easy to invert. We must invert
L=1-E-E’-E®-....
We know that E® = 0. By the geometric series, for n = 5,
Ll=1+(E+E*+E*+EY)
+(E+E2+E%)
+(E+E?)

+E*
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=I+E+E?+ E3+ E
+E? 4+ 2E3 + 3E¢

4+ E343E*

| + E*

=T+E+2E? + 4E3 + §E*

- . -

]
00 i D =

1
1
2 1 1
4

The general pattern is clear. L~! is unit lower triangular with the constant value 2¥ along its
kth subdiegonel. For n =35,

W=

~ -_ - -— -

1 -1 1

BN e e
[
—

1 1/16

that is

211-1 W—l -

16 -1
16 -2

16 ~4

16 -8

CoO B DD =
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8 —4 -2 -1 -1 |
0 8 —4 -2 =2
=l 0 0 8 —4 -4
0 o0 0 8 -8
8- -4 2 1 )

"Again, the pattern for general n should be clear.” Our code for 2°=1w-1 is mxnosnikliw.
Problems
These are mainly experimental problems, using matlab. But, what can you prove?

Problem 3.
For general n, what is the largest value 75 in our special Green’s matrix G = G,? For precisely
which index pairs (i, j) is the maximum attained? (No proof required. Experiment, using the code

mxgreen. Try “meshing” G, for large n, n = 200 say (help mesh).

Problem 4.

For general n, what are L and D in the factorization G = LnDnL;1 : L= yDp=
(Again, no formal proof is required, just the correct answer! See matlab’s rat function (help rat).
I get

i g[8 7 65 43 21
aisgD, =98 1 £ § 5333

for n = 8. The pattern is clear.)

Problem 5.
What are the lower triangular matrices L, in the LU factorizations of A : = mxnosnikliw(n)?

What are their inverses L 17

Problem 6.
Gauss factorization with no pivoting breaks down on the nonsingular matrices

B, := mxworra(n), for n > 3. At which stage does there occur a zero in the pivot position, as a

function of n (for n =3, 4, ..., 10, say)?
Equivalent matrices.

Definition. Two matrices A, B € F* Xm are equivalent (A ~ B) if there are nonsingular matrices

F and G with
AF=GB.

Then, with the changes of variables
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X:=:Fz and b:=:Gec

in R™ and R™, respectively, the linear systems

Ax=b -and Bz=c

are equivalent. -

g

Ax=b & AFz=Gc
& GBz=Gc

& Bz=c,

since G is nonsingular.

Basic fact GF4. Matrix equivalence is an equivalence relation. That is it is:

1.

2.

reflezive: A~A
symmelric A~B < B~A

iransitive: A~Band B~C= A~C.

Take F=1_,G=1I,.

If AF = GB with F € GL(m) and G € GL(m), then BF~' = G~1A with F-1 ¢ GL(m) and
G~! € GL(n), and vice versa.

If AF = GB and BH = KC with F, He GL(m) and G, K ¢ GL(n), then AFH = GKC with

FH € GL(m) and GK € GL(n). .

We wish to chose F and G so that B is as simple as possible.

Proposition 5. Let O # A e FR*™,

1.

2.

There are nonsingular matrices F and G with

I, O
AF=GE,; E,:=
0 o

In this decomposition p is unique. In fact p = p(A), the common number of pivots in any

Gauss factorization of A.
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Let

AU & 7
QAP=LU= U, ot

L, .
be an LU factorization. Then also
Qap=| L o}lv U,
L, 1 0O 0 I
) v
EF
vV, V
Let 1 2 solve
U; U vV, V, I
I I i
that is
With

v=[v 5] =[u u ]

(v v ]=[n v vl

these equations are equivalent with the upper triangular systems
Uv; = ¢, 1<i<yp,
Uvy=-y, p<i<m,,

which, because U; = W is nonsingular, can be backsolved uniquely for Vys Vg, evvy Voo In fact,

V,= V is also nonsingular, its diagonal elements being the reciprocals of those of U;.

We now have

vV, V L
AP 1 Y2 o 1 E

~ ] - vl

i
]
]
@
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with F and G nonsingular. [In fact we have, formally,
Vi=Ur, V= -U7'0, = -V1Uy ]
2. Suppose A~E,and A~E,. Then E,~E,. We wish to show that p

= 0. Suppose p # o

to obtain a contradiction. By interchanging the roles of ¢ and o, if necessary, we may supposé

that p> 0. Let E oF = GE, with F and G nonsingular. Partition

F= Fiu Fp p
Fy1 Fy m-p
o mfu
and
G=[ G, Gz] n
g n—o
Then
Fi; Fpo - I, O Fiu Fpy
O O 0O O Fy Fy
=E F=GE,
1 0
= G1 [O]
SO
F (@]
Fj,=0, F=| !
Fy, Fy

with Py, € FM=P) X(m=0) g1t and fat.” By key fact GF2, there is an Xy # 0 with F,,x, = 0.

0
But then Fx =0 with x : =| “ [0, contradicting the nonsingularity of F.
X9 u

Definition. The matrix E o of proposition 5 is called the canonical form of A uﬁder matrix

equivalence.
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The word “canonical” connotes uniqueness. The only invariant of a matrix A under matrix

equivalence is p = p(A).

Thus, with nonsingular matrices F and G of proposition 5. and the changes of variables

x:=:Fz, b: =: Gc,

the linear system

Ax=b
becomes extremely simple:
Epz =c
Ezamples.
1 0 1
1 -3 -2
A=
1 1 2
1 -2 -1
1. No pivoting.
1
L 1 ) 1 0 1
A=LU=| ! [U1 Uz]_ .
L, 1 -1/3 -3 3
1 2/3
1 1 I i
L 1 1
G=| ! =
1 2/3 |0 1
L =
Solve U,V, =1, for V;:
_ - -
1 v 1 v 1
3|7 1| e ~1/3
Solve U;Vy+ U, = O for Vy:
1 ] N I
=327 3" |




Then

V, V
F = 1 2 =
I1
2. Complete pivoting.. -
- -
1

L -1/3 1 - -
QAP=LU=| ! [Ul Uz]-=- AL - -2
= ' L, , 0 3/4 4/3 4/3

2/3 1/4

withp=[2 1 3Jandq=[2 3 1 4]. We have

[0 o 1 ¢ ] [ e ]
1 0 0 ¢ e
Q= =
0 1 0 o e,
0 0 0 ¢,
50
[ 1 ' 0 3/4 |1
L -1/3 1 1
G=q| =Q = 1 0|0
L, I 0 3/4| 1 -1/3 1 |0
2/3 1/4| 0 1 2/3 1/4 | 0
Solve U,V, = I, for Vy: - - -
I O N T 13 1/4
R M R e
i /J I 3/4
Solve U1V2+U2=0for vV,
-3 1 v 2 voo| -
43 | 2T =3 2T o

We have
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0 1 0 i e'2

P=| 1 0 0 |=1¢

0 0 1 Leé

80
v. v -1/3 /4| -1 0 3/4 -1
F=p| ' 12 =P 3/4| -1 | =|-1/3 1/4 |1
1 | 1 0 o0 |1
Problem 7.

Execute the algorithm in the proof of proposition 5, with no pivoting and with complete

pivoting, for

1 1 =1
: 1 2 1
A=

1 3 3

1 4 5

That is, find two different pairs of nonsingular matrices F and G with AF = GE, (p=p(A)=2).
Characterizations of R(A) and N(A), dnd of R(A’) and N(A').

We have already shown how to determine if a linear system Ax = b is solvable, exactly, and, .
if so, how to determine its general solution. The developments which follow will help us to do this

in a slightly better way. We essentially need to get “computational handles” on ®(A) and N(A).

In general, linear systems Ax = b need not be solvable, exactly. Such problems can, in fact, be
much more important than the exactly solvable ones. In such cases we may ask to determine those
x € F™ which minimize the sum of squates ||b—Ax||2 In general, such minimizers x need not be
unique, and then there will be solutions with large (gigantic!) norms ||x||. However if we, in
addition, minimize || x || 2 over all solutions of the least squares problem b~ Ax 12 = fninimum,

we shall obtain a unique solution x™*.

In practice, the solutions x to (even nonsingular) linear systems Ax = b can be very sensitive to
changes in A, and b. Such problems are “ill-conditioned,” or “sick” for short. The following
“regularization” procedure can frequently be used to make “sick problems get well.” “Approximate”

A by a matrix A with a smaller p- Then solve the generalized least squares problem,
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minimize ||x || 2 subject to
Ib~X x| 2 = minimum
for its shortest solution X . The practical results can be dramatic. . Frequently, if the

“approximation” is done correctly, the “smoothed” solution ¥ of the “nearby” problem can be mulch ‘

more meaningful, physically, than the solution x = A'lb.

. These words merely justify our interest in the kinds of problems we are stuaying. It turns out
that this general least squares problem can be solved, as a consequence of the LU theorem, provided
~we “do for A’ as we do for A.” Thus we shall “characterize” %( A') and N(A’) similarly as we -

“characterize” ®(A) and N (A)..

Let A €R®X™ and Jet

—
©

AF=GEP: Ep =

@)
O O

with F and G nonsingular. Partition

F=[F1 Fz], G:[Gl G2]
p m—p p n—p
R(A).

Let y € ®(A). Then y = Ax for some x € F™. With the change of variables

z
x:=: Fz, z= 1 r
22 rn—p
this becomes
y=Ax=AFz1=GE_
oG Ip 0] 2
O O Zy
2y
=le ¢ ]
o o]
= G2, .

It follows that
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R(A) C R(Gy) .

On the other hand, if y = G,2; € R(G,) then, working backwards, we see that y = Ax € R(A).
Thus, in fact,

R(A) = R(G,).
We also have

N(G;)={0,},

31

. z
since if G2, =0, then G 01 = 0so =0 because G is nonsingular.

N(A).

If x € N(A), then y = Ax =0 above, so 2z, =0. Thus

0
xz[F1 F2:| . =F,2,

2
and so
N(A) C R(Fy).
And also vice versa, if x = Fyz, then x =[ F, F, ] =: Fzs0 .
. Z
Ax = AFz =GE 2
_G I, O 0
o O z,
=G0
=0
and x € N(A). Thus

Also

N(Fp) ={0,_,},
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] 0
since if Fy2, = 0 then F =0, so = 0, by the nonsingularity of F.

Now recall how we constructed F and G, from LU factorizations of A, in the proof of

propésition 5. We have

G:=5S:=QL
F,=M:=PV
with
Vis \;2 : U1VV2+U1;-==O.»

We can do the “dual” construction for A’. For all of this it is more suggestive to change to a

notation which is also “dual.” Thus we put
K:=U'
and write the LU factorization as
AP — 1K — L, ] ’
QAP=1K'=| " || K K |.
2
Then we have the (completely!) “dual” factorization
Kl :
P'A’Q =KL’ = [ L, L ] :
K,

We can now work with this factorization to find the “duals” of the matrices S = G,and M=F,

which we found above for A.
We summarize, in the modified notation.
Proposition 6.
Let 0 # A € F**™ have the LU factorization
L
QAP =LK'= L, [ Ki K, ]
Then:

1. R(A)=R(R), NR)={0,}, with R:=PK.
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2. R(A)=R(S), N(S)={0,}, with S§:=QL.

3. N(A)=%(M), NM)={0, )}, with M:=PV

and

. V2. I ’.
Vis| Pl KVa+Kg=0.

4 N(A) =R(N), N(N):{bn_p}, with N:=Qw

and

' Wz‘ ’ /
W:= I ’ IW2+L2=O,

5. The columns of R are orthogonal with the columns of M, and the columns of S are orthogonal
with the columns of N:
RM=0 ad §N=0O.

O The definition of V shows.that K'V=0. But R =PK and M = PV so
R'M = K'P'PV =K'V =0 too. The statement that S'N = O is the “dual” of this.

Ezamples.
1 0 1
1 -3 -2
A=
1 1 2
1 -2 -1
1. No pivoting.
1
L 1 1 1
A=LK'=| * [K’l K’2]= — 011!
L, 1 -1/3 -3 |-3
1 2/3
a. R(A') = R(R), NR)={0,} with R=K= 0 -3
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1
. 1 1
b. R(A) = B(S), N(S)={0;} with S=L=
.- ’ ) - : 1 _1/3
1278
¢ NA)=RM), NM={0,} with M=Vv=| 2|[=| 1|
1
1
as was already known from the previous example!
. ' o . W,
L N@A)=RN), NM)={0,) with N=w=| ?|. Lfw,+Lj=0.
Thus
1 1 ‘ -1 =1
W2 = y
1 1/3 -2/3
1 -1 -1 -1 - -
W, = _ 4/3 -1/3
1 1/3 ~2/3 1/3 —2/3
and so
—4/3 -1/3
1/3 -2/3
oo | s -
1 0
0 1

Compare this with the matrix N on page 18.

Checks.
-1
1 0 1 0
R'M = -1 =
-3 -3 1 0
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SN =

2. Complete pivoting.

1 1 1

1

1 -1/3 2/3

QAP =LK' = L1 [K’ K']:
- 1 2

R(A') = R(R),

R(A) = B(S),

N(A) = Ro(M),

L,

N (ﬁ) = {02}

N(5) = {0}

N(ﬁ) = {01}

with

with

with

—4/3 -3 |
1/3 -2/3 0 0
1 o | |0 o
01
~1 -
-1/3 1 1} -3 1 |-2
0 3/4 4/3 |4/3
2/3° 1/4 1 o '

0 0 1 0
] 0 0 0
Q=
0 1 0 0
0 0 0 1
1 4/3
ﬁ= PK = -3 0
-2 4/3
0 3/4
~ 1 0
S=QL=
-1/3 1
2/3 1/4
v -1
M=pPv=p| 2|=]| 1
I
1

as was already known from the previous example (page 54).
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W,

d. N@A)=2(@N), NE)={0,} with N=Qw=q

Thus
1 -1/3| .. 0 -2/3
3\, = ;3|
1 ~-3/4 —1/4
[ 1
W. = 1/3 0 -2/3 -1/4 -3/4
2"‘ . p=red
1] -3/4 -1/4 -3/4 -1/4
and so
1 0
~ -1/4 -3/4
G| e ¥
-3/4 -1/4
0 1
e. Checks.
o -1
~ 1 -3 -2 0-!
R'M = - = !
4/3 0 4/3 0 |
J
i 1 ] i
SR 0 1 ~1/3 2/3 -1/4 -3/4 0 0
B I SRR U V7 I I V7SN YA Bl
0 1
Problem 8.

a. Find the matrices R, S, M and N for

— e s
N N .
[

using no pivoting, and check that
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"R'M=0, §N=0.

b. Find the corresponding matrices R, §, M and N for the szme A using complete pivoting, and

check that

-~

fM=0, §R=0.
Problem 9.

- Repeat problem 8 for the matrix A of problem 2 (i)age 22). The matrices M and M are “empty.”
Orthogonality relations involving “empty” matrices, here R'M = O and R'M = O, should be

considered to hold “aqtomatica.lly.”
In general, for certain subseAtsv L of F®, we have constructed “basis matricés” B € F®*? with
W=R(B), N(B)=1{0,}.

The following proposition is “soft” but very important. It gives the most general relation between

two “basis matrices” which describe the same subset Al of F™.

The matrix A in the proposition is not the same mairiz as the A we have been considering in
order to “solve” Ax =b. Here is a table which allows a translation from the matrices we have been

considering to the notation of the proposition, which is along the top row:

u B A n

p
R(A") R R m ‘,,
R(A) S S n p

- N(A) M M m m—p
N(ah N N n n—p

Key Proposition 7 (“change of basis™).
Let A€F"*? and B € F* X7, Then:
1. If A = BC with C nonsingular then p = ¢ and
R(A) = R(B), CN(A)=N(B).
In particular,
N(A)={0,} & N(B)=1{0,) .

2. I R(A) =R(B), N(A) = {0,,} and N(B) = {0}, then p = ¢ and there’s a unique nonsingular

matrix C with
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>
I

BC.

Since A = BC then. CeF° x'p. Since' C is nonsingular then p =0 .
We have
R(A) ={Ax: x € F?}'
={BCx: xeF?}.
Make the change of variable;s
2:=:Cx.
Since C is nonsingula.r, as x varies over all of F¥ so does z, and vice versa. Thus
R(A) = {Bz: 2 € FP} = (B).
With the same change of variables we have
N(B)={z €F®: Bz=0,)
={Cx€F? BCx=0,}
=C{xeF” Ax=0_,}
=CN(A).
We have
N(A)={0,} = N(B)= c{o,} ={0,} .
On the other hand
N(B)=1{0,} = CN(A)={0,)
= N(A)={0,}
since C is nonsingular.
First suppose that p > 0.
Let C € F7*? solve BC = A. Thus the columns of C solve
| Be=a, i=1,2,...,p.
Since
3; = Ae; € B(A) = R(B) ,
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all these linear systems are solvable, and uniquely so since N(B) = {0,}.

b. We have N(C) = {0,}. Forif Cx =0 then Ax = BCx = B0 = 0 and x = 0 since N(A) = {0,}.
Since N (C) = {0 .P} then p<o (key fact GF2, page 10). But we assumed that p > 0. Thus
p=0. C issquare, and N(C) = {0,} means that C js nonsingular.

c. Suppose now that p <o. Interchange the roles of A and B above to find a matrix D € FP X7

with B = AD and N(D)={0,}. Theno <p, 2 contradiction. ‘Thus this case cannot occur.
' |

Ezamples.

We exhibit the “change of basis” matrices C for the matrices A and B of the table preceding '

the statement of proposition 7. We use the pairs of “basis matrices” from the previous example. -

a R(A')
1 1 4/3
R=| 0o -3 |, R=| -3 o |Zr&ec.
1 -3 -2 4/3
Equate the first two rows to get
1 4/3
C = /
0 -3 -3 0
Thus
o= 1 1 4/3 | | 1 4/3
“1/3|l =3 o | | 1 o
Check:
1 1 4
RC 0 3 143 N &
= - = -3 =
L0 0 R
1 -3 -2 4/3
b. R(A)
1 _1 0 3/4_1
1 1 ~ 1 0
s = , §= Zsc.
1 -1/3 -1/3 1
1 2/3 2
i / ] i /3 1/4—
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Equate the first two rows:

1 0 3/4
C=
1 1 0
Thus - : ‘ -
c 1 0 34| | 0 3/4
-1 1 10 | |1 -3/4
.Check:
1 0 3/4
- 11 0 3/4 1.
sc=| - il _ 01 _
1 -1/3 1 -3/4 -1/3 1
1 2/3 2/3 1/4
N(A).
B ,
1 1
with
C=1}{1 ]

(an “accident”).

N(A').
—-4/3 -1/3 1 0
1/3 -2/3 - ~1/4 —
N < / /  f= /4 —3/4
1 0 -3/4 —1/4
0 1 0 1

Equate the last two rows:
-3/4 -1/4
C= / / .
0 1
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Check:

—4/3 —1/3 | 1 0]
1/3 -2/3 -3/4 —-1/4 - -
Ne=| - /3 =23 || -3/4 <Y . /4 -3/4 | .o
1 0 0 1 L -8/4 -1/4.
0 1
L - Lt

Problem 10.°

Find the “change of basis” matrices C for the “basis matrix” pairs you found in problem 8,

similarly.
Prpblcm 11.

Same problerh, for the pairs of proi)lem 9, except for M and \7[
The Language of Linear Algebra (LAL).

Let A € F*X™ and b € F?. We study the geomeiry of “solving” the linear system Ax =b for
x € F™. .

Basic definitions and consequences.

1. ' Matriz-vector multiplicaiion.
& |

Ax= [al 3-2 e a.m] 62

Lfm
=2,{; +ayby+.. tagf,

is a linear combination (£c) of the columns of A.

2. (Not so) roughly speaking, a linear space (or vector space) is an algebraic system in which it

“makes sense” to form linear combinations. We refrain from giving the rather long list of

axioms for a general linear space as we shall mostly work with the primary, yet typical, example

of the linear space F™. Linear combinations are broken down into the two more basic algebraic
operations of scalar multiplication and vector addition. The scalars must come from a “field”

F. We shall usually have F =R or F = C, but the cases F = Q, the rational numbers, and

F = GF(p), the finite field of integers modulo p, a prime number, are also useful in applications.

In our treatment we shall take F =R or C, but all results carry over directly to more general
“fields.”
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The n x m matrices F" *™ also form a linear space with respect to the scalar “field” F,

but this linear space is “algebraically the same as,” or “isomorphic with” the linear space F™n

under the “stacking” correspondence

2m

That is, we may form fcs of matrices by forming the correspondmg {cs of the associated

“stacked” vectors. In fact, A is stored in the computer as a! ! In matlab: A( ) =a.

Other kinds of linear spaces may consist of linear spaces of functions. For iﬁstance,'tile

set of twice continuously differentiable solutions of the linear homogeneous second order ODE
o' +BE +16=0, 0<7<1,

forms a linear space. Here a, B and 7 are given functions defined for 0 < 7 <1. We shall

not emphasize such types of linear spaces here, although our results carry over to them as well.

3. A subset U of a linear space ¥ is a subspace of ¥ if U is a linear space in its own right. For this
it is necessary and sufficient that Ql be closed under the formation of fcs:
a, o €F,  x,x,eU
= o+ aX, €U
Examples.
a. ¥ =R3 has four kinds of subspaces U:
0) {05},
1) lines through 0,
2) planes containing 05,
3) RS
b. The lower triangular matrices F’e‘x" form a subspace of F" X® The upper triangular matrices

Fg *™ form a subspace of F"*®, The diagonal matrices F3 %™ form a subspace of FPX™,
Fg*™ is also a subspace of each of the subspaces F“ XN and FRXR In fact, F3*™ is the

mtersecizon

Fldlxn=F1élxn n Fnuxn .
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c. The real symmetric matrices (A = A") R} *® form a subspzce of R**™. The real skew symmetric

matrices (A + A’ = O) R} ™ form a subspace of R®*™. The intersection of these two subspaces is

RE™™ N RE™ = {050}

. i.é.,. the zero matrix of RPX™, -
d. If AU and ¥ are subspaces of a linear space W, tl_u;n the intersection
UNY + = {t: tG‘ii and t€Y}) |
and sum
U4V :={u+v: ueY, vET)
are subspaces of W, but the union. .

UUY :={t: teU or te¥)

is not, in general, a subspace of W. In fact, the sum U+ ¥ is the smallest subspace of W

which contains the union UU Y.
e. Let w be a fixed vector in F™. Then |
wt :={xef™ wx=0}
isa subspa.ce of F™. Let W be a subset of F®. Then
| wJ':={x€Fi‘: w'x =0 for all w € W}
is a subspace of F®. In fact we h#ve '
wL=n {w‘": WEW}.

f.  One way to state the Fundamental Theorem of Linear Algcbra (FTLA) is that N(A) and R:(A")

are subspaces of F™ with
R(A) = N(A) L
and, “dually,” N(A’) and %(A) are subspaces of F™ with
NA) =R(A) L.
We’ll establish this result construciively, that is with an algorithm based on our work above.
Problem 12.

Prove property d, that WN ¥ and U + ¥ are subspaces, but that U U ¥ is not, in general,
a subspace. Also prove the*first part of property e, that w1 is a subspace.
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The mapping
A:FR S
T x — Ax
isa Iinea1: transformation, that is - o ' -

Alaxy + ogxy) = oy Ax; + 0 A%,

(identically, for all scalars @y, &g € F and vectors x;, Xy € F™), . Note that this can also be

written as

: 011.4 . , .
A[ X, xz] E[Axl sz]

02’ Qz :

Thus, this “linearity of A” is just the statement that
. A[ Xy Xy ] = [Ax1 sz].

All of the results of this section are “soft,” or conceptual. They follow directly from the
definitions and from properties which we have already established. Here is our first “soft”

result.

Proposition 8.

1.

2.

Ro(A) is a subspace of F™. The linear system Ax = b is solvable if and only if b € R:(A).

N'(A) is a subspace of F™. If Ax =b is solvable, by the particular solution JEP, then the set of

all solutions of Ax=Db is

J%+N(A):={XP+Z: Az =0} .

We show that R(A) is closed under the formation of &cs. Let @y, a, €F and yy, y, € R(A).
Then y, = Axy with x, € F™ (k =1, 2). By the linearity of A,

alyl + azyz = ozlel + QzAXQ
= A(a;x; + ayXx,)
€ B(A).

R(A) is closed under the formation of €cs and is thus a subspace of F®. The second statement
of #1 is just the definition of R(A).
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2. We first show that N(A) is closed under the formation of {cs. Let oy, @y €F and z,, 2, € N(A).
Thus Az, = Az, =0,. By the linearity of A,
A(oy2y + ag2y) = 0y Azy + apAZy
= &10,, + ay0,
=0,.
“Thus a,2; + g% e N(A), N(A) is closed under the formation-of Les, ;nd is thus a subspace of
P ‘ '

‘Now suppose Ax = b is solvable, with A.xp =b. If z€ N(A), that is Az =0, then also -
A(;% + z) Ax, + Az =b+0, =b, by the lmeanty of A. Thus, every vector ' Xp +zof
x,+ N (A) solves Ax = b. Vice versa, suppose Ax 'b. Definez:=x-— > Xp: . Then, by the .

linearity of A, Az = A(x—x,) = Ax—Ax,=b-b=0,,502€ N(A) and x = x, +2 € x;, + N(A).

Thus every solution of Ax = b is a member of x, + N(A). - -

3. We have
“R(A) ={Ax: xeF™}

in matriz language. Now

and
Ax=a;6;+a6,+...+a

is a linear combination of the columns of A. For this reason ®(A) is frequently called the
column space of A. The columns of A are vectors in the lincar space F™. The Linear Algebra

Language (LAL) is that the columns of A span the subspace U = H(A) of ¥ = F™.
Only superficially more generally, if vy, Vg, ..., Vy, are vectors from a linear space Y, then
A : = {agvy + Vet apVn @ @, .., o €F}
is a subspace of ¥ and the vectors vy, vy, ..., Y, are said to span U. We write this as
U =: span {vy, Vg, .-+y Vi } -
Thus, in our (concrete) case we have
B(A) = span {ay, 35, ..., 3y}

with the matrix notation the simplest.
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4.

In matrix language,
N(A)={xeF™ Ax=0,}

is the set of all solutions of the homogeneous system. -We have the unigue solutlon xX= 0m if

and only if

N(A) = {0} -

" The LAL for this is that the columns of A are linearly independent (€i). In other words, if

a;§; +a’2£2+"'+a‘m£m=
then
fl.z £2=,;,l=fm=0.,

Otherwise, when N(A) # {0}, the columns of A are lineariy dependent (2d). This means that
there is an x # 0 so that Ax = 0. In LAL, there are scalars £1s €25 -+ .y €y ot 2ll zero, so that

aéy gyt tagly =
Then, one of the columns a; can be written as an £c of the remaining columns.

Any subset of a (ﬁmte) €i set of vectors in F™ is also an €i set. For if Ax =0 = x = 0, and
if we pa.rtxtxon A= [A1 A}, then A;x; =0 1mp11es

X

from which we obtain

X1

0 =0,ie,x; =0.

By logical convention the empty set of vectors in F™ is also an 6 set.

The concepts of “fi” and “fd” extend, again with superficial generality, to general linear
spaces. The subset {v,, vy, v, ...} of vectors from ¥ is an ¢; set if, whenever any finite lc
of the v; is the zero vector, then all the coefficients in the ¢ are zeros, And &d is the opposite
of &i.

Basis.
The columns of B form a basis for the subspace U of ¥ = F™ if

U = R(B) and N(B) = {0} .
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Thus, the columns of B form a linearly independent sparning set for Al.

There is a conceptually easy, but very inefficient, wz to obtain a basis for U = R(A) when

Aefrxm le an arbitrary matrix. If N(A)= {0} we are done, with B : = A. If not then there

'is a vector x # 0 with Ax =0. ‘Suppose, by reordering the ci:lumns, if necessary, that .'Em # 0.

In fact, by the homogeneity, we may take £, : = —1. Thena_, i§ an €c of 8y, 89, ..y 27 and
thus so is every y € U = R(A). Hence U =R(Ap ) with A, :=[a; 8y .. 8] If
N(A,_;) ={0,_,}, we are done, with B: = A _,. Otherwise we repeat the process. We
eventually arrive at some B: = A} =[a; a, ... 3] (k <m) for which

W=R(B), N(B)={0}.

IfA=Othenk=0,B=90.)

Note that the basis for R(A) obtained here is a subset of the original spanning set for T(A),

the column of A. This property is sometimes desired.
The argument shows that a basis for U is ¢ minimal spanning set for U, that is it contains
a minimal number of vectors.

The same definition of basis works in general linear spaces ¥. The set {vy, vy, v, ...} isa
basis for ¥ if it is a linearly independent spanning set for ¥. A linear space ¥ is finite
dimensional if it is spanned by a finite set of vectors. The above construction then also works

to eliminate “redundant” vectors from the spanning set to obtain a finite basis for V.

The first part of the following “soft” proposition shows that a basis for a subspace AL of F*
is also a mazimal linearly independent set of vectors from AU. The second part is an easy

consequence of proposition 7, which is much more explicit.

Proposition 9.

Let U # {0,} be a subspace of F™. Then:

1.

Every linearly independent set of vectors in U, including the empty set, can l;e extended to form

a basis for AU.

Every basis for U contains the same number of vectors. ‘This number is called the dimension of

9. and is denoted by dim Al.

Let by, by, ..., by be the given & set (k>0)and put By : =[b; b, ... by]. We have
N(B,) = {0} and T(By,) CU. If R(B,) = U we are done: the columns of B : = By form a
basis for AU. Otherwise there is a vector by ; € U \ R(B,), i.e., in U but not in R(B,). Let
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; x|
Byy1:=[By byyy]. We show that N(B, ;) = {0}. Suppose[ B, bk+1] ¢ =0, that is

s
Byx+by1§=0. f{#0, then by, = -Byx/f€ %(Bk) contrary to the choice of By
Thus £ =0, Byx = 0, so x = 0 since N(B,) = {0}. Thus N(By, ¥ = {0}, as reqmred i
Ro(By+1) = U we are done, as above. We continue, repeating the process. It must stop with
.some B = B for which N(B) = {0} and ®(B) = U, since any lmeax 1ndependent set of vectors
in F® contains at most n vectors (key fact GF2, page 10). In partlcula.r, every subspace U of
F™ has a basis!
SR -
Ezamples. ‘
a. The azis vectors ey, e, ..., e, in R® form a basis, the standard basis, for R®, and even for C™.
Thus, dim R® = dim C* = n.
b. The mn outer productsegef,i=1,2,...,m,j=1,2, ..., n, where the ¢; are in R™ and the e; are
in R", form a basis for the linear space R®*™, and even for CRXm, Thus,
dim R**™ = dim C™*™ = mn.
c¢. Consider the real symmetric matrices RT *. For example if H € Rg":’ then
i1 7M1 a1
A
H=1| ny %2 73
31 732 733
1 0 0 0 0 o 0 0 o0
0 0 0 0 0 o 0 o0 1
0 1 o 6 0 1 0 0 0
+ 1 0 0 |nyy+] 0 0 0 N3y + 0 0 1 |ns.
0 0 o0 1 0 o0 0 1 0
n(n+1) . . .
Moreover, the 5 = 6 matrices given here are clearly ¢i. Only slightly more generally we
see that
dim Roxn = 2241,
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In the same way we see that

dim R}:xn:n—(n—;.i),

since the diagonal elements of K € Rp %= are all zero.

d. Likewise we h_ave

dim F‘e‘xn=-ll(112—+1)=dim ﬂx“
and
dim F§*"=n.

e. Proposiiion 6 shows that the four fundamental subspaces, B(A), N(A), R(A') and N (AN,
associated with a matrix A € F™*™ have bases with p, m~p, p and n—p vectors, respectively.
These bases are the columns of the matrices which we called S, M, R and N, respectively. Thus

we have
dim ®(A) = p = dim R(A")
and
dim N(A) =m—p, dim N(A)=n-p.

Also, if Ax = b is solvable, by the particular solution x, € F™, then the set of all solutions of
Ax=bis ’ '

xp+N(A)={xp+Nz: zeFm7P).

Definitions.
rank A : = rankof A
: =dim R(A)
and null A : = nullityof A
: =dim N(A).

Proposition 10. For A € F**™,
rank A =rank A’
and

rank A+null A=m  (Sylvester’s law of nullity).
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0 Trivial!
u

Note that Sylvester’s law, as formally stated, relates the dimensions of the two subspaces,

R(A) and N(A), of the two different linear spaces, F® " and F™, rwpectwe]y However, because

of the first relation, rank A = rank A, we also have .
dim R(A") +dim N (A)=
as well as its “dual,”

dim R®(A) +dim N(A') =n.

Thus the sum of the dimensions of the subspaces R(A) and N(A’ ), both subspaces of F™, is n,

the dimensions of F” itself. How can this be? Might the bases for R(A) and N (A), together, form

a basis for all of F?7° We shall show that the answer 1s “yes.® This is one form of the FTLA.

We give another proposmon, actually some basic facts which are of interest in their own right.

Part 4, R(A) L N(A') says that every vector y € R(A) is orthogonal with every vector v e N (AN.
Proposition 11,
1. Let AUl and ¥ be subspaces of F®, with AU a subspace of ¥. Then,
dimU C dim ¥,
with equality if and only if
U=7.

2. rank AB < min {rank A, rank B}
3. R(A'A) = R(A') .

Thus the normal equations

A'Ax=A'b
are always solvable.

a. R(A) L N(A).

1. Extend a basis for U to a basis for 7, as in the proof of proposition 9.1 (there we have ¥ = F™).-

We have U = 1" exactly when no extension is necessary.

2. We have rank AB =dim ®(AB). Moreover, if B € F™** gay then
R(AB) ={ABx: z € F*} C R(A). That is, %(AB) is a subspace of R®(A). By #1,
rank AB <rank A. But, how do we obtain the other inequality, rank AB <rank B? Answer:
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transpose the matrices and use the first statement of proposition 10:

rank AB = rank(AB)’ = rank B'A’ < rank B’ = rank B, by what.was shown above (A — B').

3. R(A’ A) is a subspace of ®(A’). By 1, and the definition of rank, we have R(A'A) = R(A')
if a.nd only if rank A’A = rank A' (=rank A). By Sylvste; s law, for A ¢ FRXm

rank A’A +null A’A=m
~and
rank A+null A=m.
Thus, our result will be proved if we can show that
null A'A = null A.

Now, in geneta.l N (B) isa subspace of N(AB) (Bx =0 = ABx = 0). Thus, by 1, our statement

is equivalent with the statement that
N(A'A) = N(A)

and, as just above, we know that N(A) C N(A’A). Butif A’Ax = ¢ then ,
lAx||? =x'A’Ax =x'0 = 0,50 Ax =0 and N(A’A) C p(A )- [This a:rgument doesn’t work
with general “fields,” only with “subfields” of C,eg., C, Rand Q]

4. This important result‘isA easy. fyeR(A)andve N (A') then y = Ax, for some x € F™, and
' A'v=0. Thus, by the reverse order rul_e,

y'v=(Ax)'v = x'A'v =x0 = 0,

so y and v are orthogonal.
The Fundamental Theorem of Linear Algebra.

Let A € F*X™, Then:
1. Every b € F™ has a unique decomposition

b=p+r, peR(A), re N(A') .
2. pis the unique solution of the least squafes problem
min{|[b—y|l%: y e R(A)},
with minimum value

Ib=plI2=|lz||2.
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3. Every x, € F™ has a unique decomposition
xp=x"+z: x*€R(A), zcN(A).
4. If x, solves Ax = p then x* is the unique solution of
| min{[lx]?: Ax=p}) -

(with minimum value ||x*|[2).

We use the basis matrices of proposition 6.
1. Since the columns of S form a baﬁis for R(A), ev;ary _p.e R(A) can be written uniq;;lely as
Pp=Su, vuweFP.’ '
Since the columns of N form a basis for N(A'), every r € N( A’) can b;: written uniquely as
r = Nv, | ;'GF““p. ‘
Thus the equation p +r = b is equivalent with the linear system
Su+Nv=> .

of n equations in n unknowns. Moreover, since $ = QL and N = QW with Q a permutation

matrix, this system is equivalent with

Lu+Wv=Qb,
that is with
L, W, u ,
=Q'b.
L, I v | =9 ()

We show that

L, W
[L W]: 1 2
L, I

is nonsingular. This is surely true when p = n, for then L, =0, W, =0, and the matrix is
L= [_‘_L, . If p<n then

Y '
W= I : LiW,+L;=0,
SO
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L'W=0, WL=0.
Consider the homogeneous system
Lu4+Wv=0.
Premultiplication by L' and W/, respe;:tively, give ‘ -
L'Lu=0, WWv=0."
" But L’L and W'W are positive deﬁnite sou=0, v = 0,_,- So N([L W])={0,} and [L W]

is nonsingular. Thus u and v solving () are uniquely determined and then so are p = Su and

r=Nv. .
- How to best solve (*) is open to question. Mathematically, we can solve
L'Lu=§b, WWv=Nb

for u and v, but computation of the “Gram matrices” L’L and W'W can certainly be avoided.
A direct approach would be to simply factor [L W] using GGauss factorization. In many
applications n—p is small (0, 1 or 2, say). Note that only one of p or r needs to be computed

since, e.g., r = b —p.

p and r are now fixed. Let y € R(A). Since p € R(A), r € N(A") and N(A') L R(A) then
rf(p—y) = 0. Thus, by the Pythagorean theorem, - :

Ib=ylI*= Ilb=p+p~vyI?

= [[r+(-NIi?

= ||zl + lip-vlI®

2 |Ili?,
with equality if and only y = p.
Since the columns of R form a basis for R(A’), every x* € F(A’) can be written uniquely as

x*=Rs, sE€ ﬁ” . |
Since the columns of M form a basis for N(A), every z € N(A) can be written uniquely as
z=Mt,  teR™™?, |

Thus the equation x* +3z = Xp is equivalent with the lincar system

Rs+Mt=x,.
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Moreover, since R = PK (K = U’) and M = PV with P 2 permutation matrix, this system is

equivalent with

Ks+Vt=P'x,,
that is with )
Kl VQ s ) ’ : .
K, I || ¢ P - (x*)

As in #1 the matrix
K, V
[ BT ] - 1 V2
K, 1
is nonsingular and (+#) could be solved by solving the positive definite systems
K'Ks=R'x,, VVt= M'xp .

Thus s and t are uniquely determined (by x;,) and then so are x* = Rs and z = Mt. Again,

only one of x* or z needs to be computed since, e.g., z = X, — x*.

4. Let x;, solve Ax = p. Since Az =0 then x* = X, —2 is also a particular solution of Ax = p.
Let x be an arbitrary solution of Ax =p. Then o

x=x*+Ms, FeFr.
Since Ms € N(A) and x* € R(A") L N(A) then, by the Pythagorean theorem,
llxli?= |ix*+Ms|?

[lx* 112+ || Ms || 2

S E i
with equality if and only if § = 0, that is x = x*.
Definition. In the “FTLA”:
e p is the orthogonal projection of b onto R(A).

® 1 is the orthogonal projection of b onto N(A'),

e x* is the orthogonal projection of every solution of Ax = p onto R(A).
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One algorithm gfss (first drafi, P=1_, Q =1,).
1. solve L’Lu = L'b for u,
2. compute p=Luy,r=b-p,

. x1. p
3. solve U;x, = u for x; and put x, =
4. solve UU's = Ux,, for s,
5. compute x* = U's.

Note that Ax = p ¢ LUx = Lu & Ux =, justifying step 3. ‘However, note also that
-pr =U;x; =u, so step -3 and the multiplication Uxi, in step 4 can be avoided! .

One algorithm gfss (second draft, P =1, Q= L)
1. solve L'Lu = L'b for u,
2. compute p=Lu, r=b-p,
3. solve UU’s = u for s,
4. compute x* = U's.
Observe that the residual veclorr = b — Ax* is computed before x* is computed!

As we indicated above, there should be better algorithms, but our code gfss is not bad for
starters. It uses Cholesky factorization of L'L and UU’ (gfcc).

Formally, if
QAP =LU =LK'

is an LU factorization then, for every b € F", the shortest solution of the least squares problem

b — Ax }| 2 = minimum is
x*=Ab
with
Al=PU/(UU)~}(L'L)TIL'Q’
= PK(K'K)"}(L'L)"'L'Q

one representation of the Moore-Penrose pseudoinverse of A. A much simpler representation of
Al can be given as a consequence of the “svd” (“singular value decomposition”) of A. However,

computation of the svd involves an eigenvalue problem. Here we have used only Gauss factorization.
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In any case Al should not be computed as a means for solving the (generalized) least squares problem.

It is (merely) a theoretical entity!

Ezample..
1 0 1 1]
1 -3 -2 .
1 1 2 3
1 -2 -1 ‘ 4 .

On page 15 we found that Ax = b is not solvable, exactly. On pages 5-8 we factored

1
11 1 9
A=LU= 1
1 -1/3 -3 -3
1 2/3J
with no pivoting. First we have
-~ —
1
1 1 1 1 1 1
: 1 -1/3 2/3 1 =173 4/3 14/9
1 2/3
' 1 0 1 2 _
Uy’ = s s -3 | = 3
1 3 -3 18
We factor, by Gauss,
4 4/3
L'L=: / ,
1/3 1 10/9
- 1 2 =3
-3/3 1 2772 |’

and compute
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L'b=

1. Solve L'Lu = L'b for u:

2. Compute

and

1 4 4/.3T uy
1/3 1 10/9 || w,
0]
= c=
13|
L
U 24 1
u= = '—0.
u, 3 1
1
. 101 |24,
= u = -—
P 1 -1/3|{ 3 |10
RERE
-14 -2
-7 -1
—he—p=— 1 - £
r=b-p=1 1| |10
14 2
L . L .
Ie2=5. nru=ﬁ;.

1

1 -1/3 2/3 1| 3

1 1 2
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3. Solve UU’s = u for s:

1 2 -3 oy 24

= 1
-3/2 1 27/2 | | o 13 10
cre| 2L
39 | 10
o, 49/2 1
§= — —
oy 13/3| 15
4. Compute
3 49/2
x*=Uls= 0 -3 L
13/3} 15
1 -
49/2 49
N T IS U S
=B 1=]-2%] 5
23/2 23

Check. On page 14 we computed the “basis matrix”

for N(A). We have

99

M'x* = [ -1 -1 1 ] -6 | L
X 20 30
23
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Problem 18.

Find the shortest solution of the least squares problem for

11 -1 1]

12 1 “_
A= . b: 1 ,

1 3 3 1

1 4 5 -1

as above, including the check.

Problem 1j.
Let QIAP = LU with p =.[ P_(l) 15(2) cen p(m)] the permutation associated with P. Show that

the columns {ap(l), ay(2), )} form a basis for R(A).

cvey a-p(p
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g0 de de  dP dP 0P dO 0P dP JP 0P dP dP OP dP dP 0P dP P d°

g0 de de 90 o do

dePdePdePdePdePdePdePdePdePdePde@dePdeP

function [L,U,g] = gfpn (A, ummy )
[L U gl = gfpn(A,dummy) :

GAUSS FACTORIZATION with NO PIVOTING for zizs. Tries to factor A = LU
with L unit lower trapezoidal and U upper -zapezoidal.

g is the growth factor. It is the ratio ¢f the maximum absolute value
of the elements of all Gauss transforms, including A itself, to the
maximum absolute value of the elements of ~. g ' '

Displays successive tableaus if nargin, the number of input arguments}
is two and cols A < 8. This code provides z nice introduction to matlab
programming. : : . ‘

gfpn is not suitable for general use since it is not numerically stable:
For certain important classes of matrices, however, it can be shown that
pivoting for size is not strictly necessary. For such problems gfpn is
quite .useful. See gfmarkov for instance. ' .

Copyright (c) 6 April 1991 by Bill Gragg. 11 rights reserved.

Revised 3 October 1994.

gfpn calls no extrinsic functions.

Here is a streamlined sproduction type" code, without comments,
displays, or computation of the growth factcr. It is easier to see the
essence of the code here, without the friiis. The lines ‘% begin gfpn’
and ’'%end gfpn’ are part of my own style, a carryover from algol, the
first mathematically precise programming language. Three space indent-
ation is fairly standard. The vertical spacing is rather subjective.

function [L,U] = gfpn(A)
begin gfpn
[n m] = size(A); k = 0;
for kX = l:min(m,n)
if k<n
j = k+l:n; a = A(j.k);
if A(klk) ~= 0
a = a/Alk,k); A{j.k) = a;
else
if any(a ~= 0)
error ('Attempt to divide by zero in pivot position.’)
end
end
if k<m
i = k+1l:m;
A(§,1i) = A(F,1) - a*Aa(k,1);
end

L = A(:,1:k); U = A(l:k,:); L(1,1) = 1; z = zeros(k,1);
for i = 1:k-1 )

z(1l:1); L(l:i+1,i+1) = [o; 1}1;

k - 1; U(j+1:k,J) = o;



o0 oo

[

end gfpn

Here is the actual code. It is more comp.:i-ated because of all its
options.
begin gfpn

' Find the nunbers of columns (m) and rows (n) of A and initialize the
stage counter k. - . : e

[n m)] = size(d); k =0;

Set logical variables.

display = nargin > 1 & m < 8;
- growth = display | ( nargout > 2 ):
Coﬁputé the scale factor a and initialize the growth factor g, if
required. L - '
if growth :
s = max(abs(aA(:))); g = s;
end

Display k, A and s, if required.

if display
title = 'Pauses after each stage. Eress any key to continue.’;
format compact, format short, dizp(r ry, disp(title)
disp(’ '), k, A, s
pause
end
"Do Gauss". The array A should now be tnought of as a *tableau*, or

workspace, not as a matrix.
for k = 1:min(m,n)
Compute the new tableau. Here matlab‘’s matrix operations allow
one to avoid the use of a nest of two for loops. Loops are
extremely slow in matlab.
if k <n
i = k+1:n; a = a(j,k);
if A(k,k) ~= 0
Divide elements below the pivot by the pivot.
a = a/A(k,k); A(j.k) = a;
else

if any(a ~= 0)



error ('Attempt to divide = zero in pivot position. ‘)
end

end
if k < m
Update the "Gauss transform" rzr:z of the tableau.

i = k+1:m; _ ‘
A(3,1) = A(3,1) - a*a(k,i);

Update the growth factor; if required.
if growth : .
t = max(max(abs(A(j.i)))i; g = max(g,t);
end
end

end

Display the stage counter k, the mod:iZied tableau and the current
growth, if required.

if display
k, A

if s > 0

h = g; g:g/.s}, g=nh

else : '
g=1

end

~

pause
end
end
Prepare the output. L is the lower trapezoidal part of the final

tableau with its diagonal elements replaced by ones. U is the upper
trapezoidal part of the final tableau. o

if k>0
L =A(:,1:k); U =a(l:k,:); L(1,1) =1; z = zeros(k,1);
for i = 1:k-1
o= 2(1:1); L(l:i+1,i+1) = {o; 11;
i =k~ i; U(j+1l:k,]) = o;
end

end

if growth & s > 0
g = g/s;
end



[

end gfpn

Approximate total flop
Real case: TBC
Complex case: TBC

s [m = cols(A), n = rows (A} ]
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function [L,U,p,q,g] = gfpc(A,dummy)

[LUpqgl] = gfpc(a,dummy) :

GAUSS FACTORIZATION with COMPLETE PIVOTING Zor size.

with P and Q permutation matrices, L unit °_

Factors Q'AP = LU

cwer trapezoidal with r

columns and U upper trapezoidal with nonzer: diagonal elements and r
p and ¢ are the permutations (row vectors) associated with P and

YOWS..

Q, g is the growth factor, and r is a class
s»numerical rank" of A.

ical getermination of a

Displays intermediate output with pauses if nargin = 2 and cols(A) < 8.
Press any keéy to continue the computation. '

Copyright (c) 6 April 1991 by Bill Gragg: L1l rights reserved.
Revised 10 April 1994. .

gfpc calls no extrinsic functions.

begin gfpc

Initialize p, g and g.

inm] = size(A); P = 1l:m; g = 1l:n; g = 0;

Set up displays and display initial tableau, if required.

display = nargin > 1 & m < 8;

if display
format compact, format short
titlel = ‘Initial tableau / p / a’;
title2 = ’‘Pivot indices (t,s) / Pivor 2(t,s) / Current growth g’;
title3 = ‘Tableau after interchanges / p / q';
title4 = ‘Tableau after computation / p / q‘;
disp(’ '), disp(titlel), disp(a)
disp(p), disp(q), pause
end

Perform the Gauss factorization.

for r = 1l:min(m,n)

Find the pivot and update the “local growth" g.

[b j] = max(abs(A(xr:n,r:m))); [c s] = max(b);
Ss=r +s - 1; t=r+t - 1;

Adjust for matlab’s “nonuniform" max function.

=1n

if r
s t; t =x;

end

. Q
nu

j(8);
max(g,c);



de 0P oe

Set scale factor and tolerance if r - 1.

if r <2
a = g; tol = min(m,n) *a;
end

Terminate loop, if possible.
if tol + ¢ == tol

r=r break
- end : ' :

=l

Display pivot and local growth information, if required

L if display ' -
disp(sprintf(’ Stage $g’,r)), disp(title2), disp([t s])
dlsp(A(t s)), diso(g/a), pause

end .

Perform the interchanges.

p(ls rl); A(:,[r s])
allt r)); A(lr t],:)

pllr s1)
a(lr t])

£, [s r));
£t r],:);

Display tableau after interchanges, :< required.
if display .
disp(title3), disp(a),. disp(p,, disp(q), pause
end
This completes the half-step. Now ds the computation.
if r <n
j = r+l:n; A(J,r) = A(3,r)/A(r,z,,;
ifr<m
1= r+l:m;
A(jli) =A(jli) = A(jlr)*A(rlii;
end
end
Display new tableau, if required.
if display & (r<n | m< n)
disp(titled), disp(a), disp(p,, disp(qg), pause
end
end
Prepare the output. L is the lower trapezoidal part of A with its
diagonal elements replaced by ones. U is the upper trapezoidal part
of A. Scalegby a if r > 0; otherwise g := 1.
ifr>0

= A(:,1:1); U= A(l:x,:); L(1,1) = 1; z = zeros(r,1);

for i = 1:r-1



o = z(1l:i); L(l:1i41,1i+1) = [o; .;3;
j=r - i; U(j+1l:r,3) = o;
end
g = g/a;
else
g=1
‘end
L end gfpc

Real case: TBC
Complex case: TBC

de de de

Approximate total flops [m = cols A, n = rous Al:



00 0° Jd° 0P d° 00 O° dO J° d° de

o oP

function [L,U,p,q,g] = gf (A)
[LUp gg)] = gf(z):

GAUSS FACTORIZATION with COMPLETE PIVOTING or size. Factors Q'AP = LU

with P and Q permutation matrices, L unit _syer trapezoidal with r

columns, and U upper trapezoidal with nonzzrs diagonal elements and r ~—
rows. p and q are the permutations (row vectors) associated with P and

Q, g is the growth factor, 'and r is classiczl determination of a '

- "numerical rank" of A. o N

This is our matlab *production code*. It s the same. as gfpc, but with
no comments or displays.

Copyright (c) 8 June 1991 by Bill Gragg. zi1 rights reserved.
Revised 10 April 1994. .

gf calls no extrinsic functions. ) - v
begin gf
[n m] = size(a); P = 1:m; Q = 1:n; g = 0;

for r = 1:min(m,n)

[b 3] = max(abs(A(r:n,r:m))); [c s = max(b); t = j(s);
S=r+s - 1; t=r+t -~ 1; g = max(g,c);
if r == n
. s =t; t = r; .
end N
if r < 2
a = g; tol = min(m,n) *a;
.end
if tol + ¢ == tol
r=r - 1; break
end
p(lr s]) = p(ls rl); A(:,[r s]) = Al:,[s r]);
allr t1) = q(lt r]); A([r t],:) = Al[t rl,:);
if r < n

j = r+l:n; A(j,r) = A(j,r)/A(x,xr};

ifr <m
i = r+l:m; A(j,i) = A(3,1) - A(J,r)*A(r,i);
end
end
end
if r >0

i=1:r; L = A(:,i); U= a(i,:);



L(l,1) = 1; z = zeros(r,1);

for i = 1:r-1

> = 2{1l:1); L(1:i+1,1i+1) = [o; 17;
J =1 ~ 1; U(j+l:r,j) = O;
end
g = g/a;
else
g=1;
end

end gt



PROBLEM SET: FORWARD AND BACKWARD SOLUTION
OF TRIANGULAR SYSTEMS. MATRIX MULTIPLICATION.

In problems 1—4, solve the given triangular system, Le=b or Bx =¢, by hand.

Problem 1.

1 0 0 0 2]
-1 1 0 0
L= b= 1
-1 -1 1 0 0
-1 -1 -1 1 -2
- . L
© Answer: c=[2, 3, 5, 8.
Problem 2.
1 0 0 1 BN
~ 0 1 0 2
U= =
0 0 1 4
0 0 0 8 8
_ I L]
 Anmswer: x=1(1, 1, 1, 1}.
Problem 3.
e -T -
1 0 0 0 0_1
1 1 0 0 -
L=} b= 2
1 3 1 0 -10
1 7 6 1 —4
i S il

Answer: ¢=[0, -2, —4, —6]".

FBS-1
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[

Problem 4.

(=T — I — T

O O et pea

D NN

D D L
L

Answer: x=[1, -1, 1, ~-1)

Problem 5.

Combine the results of problems 1 and 2. Compute A : = L[ and check that Ax = b, by hand.

--Answer: A = mxwilkinson(4). See Gauss factorization problem ot

Problem 6.

Combine the results of problems § and 4. Compute A : =L and check that Ax = b, by hand.

Answer: A = mxvandermonde([l 2 3 4]). See Gauss factorizatiop, problem set.

FBS-2



PROBLEM SET: GAUSS FACTORIZATION

Factor the following structured matrices A into A = LU, by hand, using the tableau, and check your work
by matrix multiplication. You will better appreciate computers after doing these.problem's, and they
really are interesting! You can find out the complete answers by executing [L U g] = gfpn(A, 0) in
matlab. The required special matrix codes are in stewart/home/ma1043/mfiles.

“Do Gauss” — NO PIVOTING. Note well the growth factors g. ’

.-

Problem 1.
A 4 by 4 matrix due to Wilkinson:

W = mxwilkinson(4),

1 0 0 1T

What is the growth factor for mxwilkinson(n)?

Problem 2. ‘ ’ \t
A Hadamard matrix of order 4:

H = mxhadamard(4),

1 1 1 1
1 -1 1 -1
H=
1 1 -1 -1
L 1 -1 -1 1

GFP-1



This is an example of a Cholesky factorization, We have U=1 g, that A = L1/,

Problem 3.
“Pascal’s matrix” of order 5:

P = mxpascal(5),

[_ 1 1 1 1 ] E
1 2 3 4 3
P=| 1 3 6 10 15
1 4 10 20 35
1 5 15 35 70 ]

with L having positive

diagonal elements. Also, the Cholesky factor L is a part of Pasca)’s triangle, written another way.

Problem 4.
The (tridiagonal) “negative second difference matrix” of order 3.

T = mxtsd(5),

[ 2 21 0 o o] .

Te= 0 -1 2 -1 9 _(The second most important matrix
0 0 -1 2 —j in the Whole Wide World)

000-1'2_‘ \

Note that the factorization process is very “cheap” for tridiagonal rnatrices, How cheap!

You can modify the factorization T = LU in a simple way, by an “interior diagonal scaling,” to get

another Cholesky factorization T = R'R, with R upper triangular,

The diagonal elements of U, the pivots, are all positive. Let D be the diagonal matrix formed from
their (positive) square roots. Then T = LDD-'{ = RRwith R’: = |p and R =D~U. Thus one
multiplies the columns of L by the square roots of the pivots and, to adjust for this, divides the rows of U

by these square roots.

"GFP-2



Problem 5.

The “negative periodic second difference matrix” of order 5:

T = mxpsd(5),

[~ b

2 -1 0 0 -1
-1 2 -1 0 O
T= 6 -1 2 -1 0

6o 0 -1 2 -1
-1 0 0 -1 2

- -

- The last diagonal element of U will be zero! This can al§o, be medified slightly to be a Cholesky
factorization, T = R'R, with the last diagonal element of R zero.
Problem 6.
The “min matrix” of order 5:
M = mxmin(5),

B ]

gi
"
O e

1
2
2
2
2

o O W N
- -G 7 I - o
e A W N -

1 | ) \

Another Cholesky factorization!

Problem 7.
The “max matrix” of order 5:
M = mxmax(5),

[ T

=4
I
P T G S R

2
2
3
4
5

e b G L W
o o B B
o Y v n
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Problem 8.
A 4 by 4 Vandermonde matrix built from the “abscissas” 1,23 4,

V = mxvandermonde([1 2 3 4)),

[_ 1 1 1 1
1 2 3 4
V= . o 16 (Vis of theoretical interest)
1 8 27 64
i i

_ Problem 9. .
The 3 by 3 Hilbert matrix:

H = rats(mxhilbert(3)) ,

- .

B Lo L T T T
= A [JUITSH

WOl D= pt

S

Problem 10.
The “idft matrix” of order 4 (the most important matrix in the Whole \);Vide World):

W = mxidft(4),

[ 1 1 1 1
1 1 =1 - .
Y= -1 1 - (= sqre(-1)

Complex matrices rarely arise in practice but, when they do, they seem to be important. mxidft(n) is
probably the most important matrix of all time, the matrix used jn the fast Fourier transform. Typical
orders are n = 1024 and n = 4096!. Here we use the case n — 4 as a, fairly massive (1, drill in complex

arithmetic.
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Complete pivoling for size or, more precisely, pivoting to prevent growth.

This kind of pivoting should not be confused with the term “pivoting® that is used in the field of
linear constrained optimization (linear programming), nor should the term “programming” which is used

in that field be confused with the programming of computers! Confusing, isn’t it?

-

Problem 11.

Factor the Wilkinson matrix of problem 1 using complete pivoting: QAP = LU. What is the growth
factor now? Answer: g=2!
Problem 12.

Factor Q'AP = LU for the following matrix A in three ways, using no pivoting, complete pivoting,

and any other pivot scheme you choose.

— -

ot ek
o e N
(/]

L B

Pivots are, by definition, not zero. How many pivots are there in each case? We will ultimately show
that, for a given matrix A, ‘every pivot scheme will always find the same number of pivots, and this no
matter how large the matrix Al

These are examples of the )
LU Theorem. Let A benbym with A # O. There are permutation matrices P and Q, and an integer

r with 1 <= r <= min(m, n), so that
Q'AP=1LU,

with L unit lower trapezoidal with r columns, and U upper trapezoidal with nonzero diagonal elements
(and r rows). ’

Now you have “paid your dues” so you can use matlab.

Problem 13.

Factor the 8 by 8 versions of the matrices in problems 1—11 with matlab. Use all three codes: gfpn,

gfppr and gfpc. Do not output the factorizations! Compare the growth factors g obtained by these three

pivot strategies. Check the factorizations by displaying the respective scaled errors
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T e e e e -—---"W

b

en = norm (A — L+U)/a |
ep =norm (A(q, :) - L+U)/a *° e N
ec = norm (A(q, p) - L+U)/a

where
a=norm(A).

Simultaneously, record the condition numbers, cond A, of these matrices. For inst

cond(nllxhilbert(S)) gives the condition number of the 8 by 8 Hilber, matrix.

Repeat with n = § replaced by n = 16, or do these simultaneous]_y,

“solving Ax = b for x on a computer, for square matrices A. We always have cond A >=1. Ais il
conditioned if cond A is large. One might think that large growth and ill-

following example shows that this is not true.

We have g = 9n-1 ¢, W= mxwilkinson(n) and partial Pivoting byt g=2if
‘used, it appears. (One can prove this!) What is cond(mxwilkinson(zoo))? How long does it take matlab

to compute it? How about n = 5007

Problem ' 14.

Factor the r'na.trix in problem 12 by using matlab and gfpc, and check that ec is of the order of

magnitude of the machine precision eps.

Problem 15,

Execute “eps” and “binrep(eps)”, or just “br(eps)”. Then execute “epg — machprec(0)”, to replace

€ps by its “correct” value. We won’t have to know the fine details concerning eps,
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