
Solutions to Selected Problems from West, Installment Two

2.1.7 Prove that every n-vertex graph with m edges contains at least m − n + 1 cycles.

Proof: We prove the result for connected graphs. The proof is by induction on m. If
m ≤ n − 1, then G is a tree and so contains (n − 1) − n + 1 = 0 cycles. Assume that
m = k > n − 1, and that the result holds for graphs with fewer than k − 1 edges. Since
m > n − 1, we know that G contains at least one cycle; let e be a cycle edge. By the
induction hypothesis, G − e contains at least (m − 1) − (n − 1) = m − n cycles.
Restoring e to G induces at least one additional cycle, so G has at least m − n + 1
cycles. 2

2.1.18 Prove that every tree with maximum degree ∆ > 1 has at least ∆ vertices of degree 1.

Proof: Let T be a tree with maximum degree ∆ ≥ 2. Let v be a vertex of degree ∆,
and let e1, e2, . . . , e∆ be the edges incident to v. Let Pi (1 ≤ i ≤ ∆) be a maximal
simple path leaving v on ei. Since T is a tree, (i) Pi ends at a leaf vi, and (ii) the leaves
vi (1 ≤ i ≤ ∆) are distinct. The result follows. 2

2.1.26 For n ≥ 3, let G be an n-vertex graph such that every graph obtained by deleting one
vertex is a tree. Determine e(G), and use this to determine G itself.

Solution: Since every graph obtained by deletion of a single vertex is a tree, we know
that G contains no cut vertex, so every vertex in G lies on a cycle, and that G contains
n edges. It follows that G = Cn. 2

2.1.30 Let T be a tree in which all vertices adjacent to leaves have degree at least 3. Prove
that T has some pair of leaves with a common neighbor.

Proof: Let P be a longest path in T , and let x be an endpoint of P . Necessarily, x is a
leaf. Let w be the neighbor of x, and y ∈ N(w)− V (P ). We know that y exists because
w has degree at least 3. Moreover, by our choice of P , y is a leaf. But then x and y are
leaves with a common neighbor.

2.1.33 Let G be a connected n-vertex graph. Prove that G has exactly one cycle if and only if
G has exactly n edges.

Proof: First suppose that G has exactly one cycle C, and let e ∈ E(C). Then G − e is
a tree, and so has exactly n − 1 edges, and it follows that G has exactly n edges. Now
suppose that G is connected and has exactly n edges. Since G is connected, G contains
a spanning tree T which accounts for n − 1 edges of G. The remaining edge induces
exactly one cycle. 2



2.1.72 Prove that if T1, T2, . . . , Tk are pairwise-intersecting subtrees of a tree T , then
k⋃

i=1

Ti 6= ∅.

Proof: Let T be a tree. If k = 2, the result is immediate. Assume that k > 2, and that
the result holds for all smaller sets of pairwise-intersecting subtrees of T . By

hypothesis, there are vertices x ∈
k−1⋂

i=1

Ti, y ∈
k⋂

i=2

Ti, and z ∈ T1
⋂

Tk. Let Pxy, Pxz, and

Pyz be the simple paths in T joining the indicated pairs of vertices. Note that
Pxy

⋂
Pxz

⋂
Pyz 6= ∅, since otherwise we obtain a cycle in T . Moreover, since each

subtree Tj (1 ≤ j ≤ k) contains two of x, y, and z, it follows that each subtree contains
at least one of Pxy, Pxz, and Pyz. But then

Pxy

⋂
Pxz

⋂
Pyz ⊆

k⋂

i=1

Ti,

and we’re done. 2
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